Alpha-1 antitrypsin deficiency (AATD) is most commonly caused by the Z mutation, a single-base substitution that leads to AAT protein misfolding and associated liver and lung disease. In this study, we apply adenine base editors to correct the Z mutation in patient induced pluripotent stem cells (iPSCs) and iPSC-derived hepatocytes (iHeps). We demonstrate that correction of the Z mutation in patient iPSCs reduces aberrant AAT accumulation and increases its secretion. Adenine base editing (ABE) of differentiated iHeps decreases ER stress in edited cells, as demonstrated by single-cell RNA sequencing. We find ABE to be highly efficient in iPSCs and do not identify off-target genomic mutations by whole-genome sequencing. These results reveal the feasibility and utility of base editing to correct the Z mutation in AATD patient cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8571173 | PMC |
http://dx.doi.org/10.1016/j.ymthe.2021.06.021 | DOI Listing |
Front Cell Dev Biol
December 2024
Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China.
Pseudouridine (Ψ) is a post-transcriptional modifier of RNA, often referred to as the 'fifth nucleotide' owing to its regulatory role in various biological functions as well as because of its significant involvement in the pathogenesis of human cancer. In recent years, research has revealed various Ψ modifications in different RNA types, including messenger RNA, transfer RNA, ribosomal RNA, small nuclear RNA, and long noncoding RNA. Pseudouridylation can significantly alter RNA structure and thermodynamic stability, as the Ψ-adenine (A) base pair is more stable than the typical uridine (U)-A base pair is due to its structural similarity to adenine.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China. Electronic address:
Mutations in the Rhodopsin (RHO) gene are the main cause of autosomal dominant retinitis pigmentosa (adRP), 84% of which are pathogenic gain-of-function point mutations. Treatment strategies for adRP typically involve silencing or ablating the pathogenic allele, while normal RHO protein replacement has no meaningful therapeutic benefit. Here, we present an adenine base editor (ABE)-mediated therapeutic approach for adRP caused by RHO point mutations in vivo.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.
View Article and Find Full Text PDFElife
December 2024
Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
Parkinson's disease (PD) is a multifactorial disease caused by irreversible progressive loss of dopaminergic neurons (DANs). Recent studies have reported the successful conversion of astrocytes into DANs by repressing polypyrimidine tract binding protein 1 (PTBP1), which led to the rescue of motor symptoms in a chemically-induced mouse model of PD. However, follow-up studies have questioned the validity of this astrocyte-to-DAN conversion model.
View Article and Find Full Text PDFJ Biomed Opt
December 2024
Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States.
Significance: Cellular metabolic dynamics can occur within milliseconds, yet there are no optimal tools to spatially and temporally capture these events. Autofluorescence imaging can provide metabolic information on the cellular level due to the intrinsic fluorescence of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] and flavin adenine dinucleotide (FAD).
Aim: Our goal is to build and evaluate a widefield microscope optimized for rapid autofluorescence imaging of metabolic changes in cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!