Micro and nanoplastics are one of the major emerging environmental contaminants. Their impact on human health is less explored. There are several in vitro studies on their cellular uptake and accumulation, where micro and nanoplastics were mostly reported to be non-cytotoxic. The effects caused by the direct contact of nanoplastics with the immune system, especially at the cellular level is less known. Here we report that RAW 264.7 macrophages undergo differentiation into lipid laden foam cells when exposed to polystyrene nanoplastics (50 μg/mL). We found that exposure of RAW 264.7 macrophages to sulfate-modified polystyrene nanoplastics results in the accumulation of lipid droplets in the cytoplasm leading to foam cell formation. Exposure to high concentration of polystyrene nanoplastics (100 and 200 μg/mL) results in increased reactive oxygen species and impair lysosomes in macrophages. The exposure of BV2 microglial cells to polystyrene nanoplastics (50 μg/mL) induces lipid accumulation. In addition, our results indicate the role of polystyrene nanoplastics in altering the lipid metabolism in murine macrophages in vitro. In the present study we reported that polystyrene nanoplastics stabilized with anionic surfactants can be potent stimuli for lipotoxicity and foam cell formation leading to the pathogenesis of atherosclerosis posing major threat for animal and human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2021.152850 | DOI Listing |
Drug Chem Toxicol
January 2025
Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
Daily contact with considerable amounts of polystyrene nanoparticles (PSNPs) may cause harmful effects on the living organisms, through mechanisms that are not fully understood. The study aimed to evaluate the cytotoxic and genotoxic effects of PSNPs (size 200 nm and 40 nm) in mesenchymal stem cells (MSCs). In order to estimate cellular uptake and retention of nanoplastics, PSNP-treated cells have been analyzed by transmission electron microscopy.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China. Electronic address:
The interactions of nanoplastics (NPs) with natural organic matter (NOM) are influenced by their surface functional groups. In this study, the effects of representative functional groups on the interactions among polystyrene nanoplastics (PS-COOH and PS-NH), hydrophilic low molecular weight (LMW) substances (salicylic acid (SA), phthalic acid (PA), and gluconic acid (GA)), and a novel AlTi-based coagulant were investigated. We found that PS-NH (83.
View Article and Find Full Text PDFBull Environ Contam Toxicol
January 2025
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information·Technology, Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing, Jiangsu, 210019, China.
The widespread concern over nanoplastics (NPs) has prompted extensive research into their environmental impact. Concurrently, the study examined the combined toxicity of PS NPs and cadmium (Cd) on wheat. As indicated by the results of in situ Micro-ATR/FTIR, the aging process of PS NPs (50 nm) led to an increase in carbonyl and hydroxyl groups on their surface, enhancing hydrophilicity and consequently, the adsorption capacity for Cd.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
The co-occurrence of microplastics (MPs) and nanoplastics (NPs) with polychlorinated biphenyls (PCBs) is an emerging environmental concern. Wetland plants, with their unique anaerobic-aerobic environments, offer a promising approach for PCB removal. However, the impact of MPs and NPs on PCBs dynamics in constructed wetlands is not well understood.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China. Electronic address:
Spirulina platensis (SP) provides humans with proteins and natural pigments. The effects of micro/nanoplastics (MNPs) on SP are of great interest. We focused on the effects of high concentrations (100-300 mg/L) of polystyrene MNPs on SP for 50 days.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!