Natural soluble epoxide hydrolase inhibitors from Inula britanica and their potential interactions with soluble epoxide hydrolase: Insight from inhibition kinetics and molecular dynamics.

Chem Biol Interact

Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China. Electronic address:

Published: August 2021

Soluble epoxide hydrolase (sEH) is a potential drug target to treat inflammation and neurodegenerative diseases. In this study, we found that the extract of Inula britanica exhibited significantly inhibitory effects against sEH, therefore, we investigated its phytochemical constituents to obtain seven new compounds together with sixteen known ones (1-20), including two pairs of novel enantiomers, (2S,3S)-britanicafanin A (1a), (2R,3R)-britanicafanin A (1b), (2R,3S)-britanicafanin B (2a), and (2S,3R)-britanicafanin B (2b), and three new lignans britanicafanins C-E (3-5). Their structures were determined by HRESIMS, 1D and 2D NMR, and electronic circular dichroism (ECD) spectra as well as quantum chemical computations. All the isolates were evaluated for their inhibitory effects against sEH, compounds 1-3, 5-7, 9, 10, 13, 14, and 17-20 showed significant inhibitory effects against sEH with IC values from 3.56 μM to 26.93 μM. The inhibition kinetics results indicated that compounds 9, 10, 13, and 19 were all uncompetitive inhibitors, and their inhibition constants (K) values were 7.11, 1.99, 4.06, and 8.78 μM, respectively. Their potential interactions were analyzed by molecular docking and molecular dynamics (MD), which suggested that amino acid residues Asp335 and Asn359, especially Gln384, played an important role in the inhibition of compounds 10 and 13 on sEH, and compounds 10 and 13 could be considered as the potential candidates for the development of sEH inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2021.109571DOI Listing

Publication Analysis

Top Keywords

soluble epoxide
12
epoxide hydrolase
12
inhibitory effects
12
effects seh
12
inula britanica
8
potential interactions
8
inhibition kinetics
8
molecular dynamics
8
seh compounds
8
seh
6

Similar Publications

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with epoxide hydrolase activity in the C-terminal domain (C-EH) and lipid phosphate phosphatase activity in the N-terminal domain (N-phos). The C-EH hydrolyzes bioactive epoxy fatty acids such as epoxyeicosatrienoic acid (EET). The N-phos hydrolyzes lipid phosphomonesters, including the signaling molecules of lysophosphatidic acid (LPA).

View Article and Find Full Text PDF

A new sesquiterpene, 8,11-epoxy-cadi-3,9-diene (), along with nine known compounds (-), were isolated from the heartwood of . Their structures were elucidated based on NMR spectroscopic data, and by comparison with data previously reported in literature. The hexane extract from the heartwood of , the EtOH extract from the heartwood of , the CHCl-soluble fraction of the EtOH extract, the EtOAc-soluble fraction of the EtOH extract and the compounds - have been evaluated as acetylcholinesterase inhibitors, and among these, the extracts and fractions exhibited satisfactory results.

View Article and Find Full Text PDF

Background: Phytophthora sojae (Kaufmann and Gerdemann), a pathogenic oomycete, causes one of the most destructive soybean diseases, Phytophthora root and stem rot (PRR). Previous studies have shown that benzoxazines (BXs) such as 6-methoxy-benzoxazolin-2-one (MBOA) and benzoxazoline-2-one (BOA) in maize root exudates inhibit the chemotaxis of zoospores, as well as the mycelial growth and pathogenicity of P. sojae.

View Article and Find Full Text PDF

Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!