Deep Learning-Based Carotid Plaque Segmentation from B-Mode Ultrasound Images.

Ultrasound Med Biol

Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada.

Published: September 2021

Carotid ultrasound measurement of total plaque area (TPA) provides a method for quantifying carotid plaque burden and monitoring changes in carotid atherosclerosis in response to medical treatment. Plaque boundary segmentation is required to generate the TPA measurement; however, training of observers and manual delineation are time consuming. Thus, our objective was to develop an automated plaque segmentation method to generate TPA from longitudinal carotid ultrasound images. In this study, a deep learning-based method, modified U-Net, was used to train the segmentation model and generate TPA measurement. A total of 510 plaques from 144 patients were used in our study, where the Monte Carlo cross-validation was used by randomly splitting the data set into 2/3 and 1/3 for training and testing. Two observers were trained to manually delineate the 510 plaques separately, which were used as the ground-truth references. Two U-Net models (M1 and M2) were trained using the two different ground-truth data sets from the two observers to evaluate the accuracy, variability and sensitivity on the ground-truth data sets used for training our method. The results of the algorithm segmentations of the two models yielded strong agreement with the two manual segmentations with the Pearson correlation coefficient r = 0.989 (p < 0.0001) and r = 0.987 (p < 0.0001). Comparison of the U-Net and manual segmentations resulted in mean TPA differences of 0.05 ± 7.13 mm (95% confidence interval: 14.02-13.02 mm) and 0.8 ± 8.7 mm (17.85-16.25 mm) for the two models, which are small compared with the TPA range in our data set from 4.7 to 312.8 mm. Furthermore, the mean time to segment a plaque was only 8.3 ± 3.1 ms. The presented deep learning-based method described has sufficient accuracy with a short computation time and exhibits high agreement between the algorithm and manual TPA measurements, suggesting that the method could be used to measure TPA and to monitor the progression and regression of carotid atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2021.05.023DOI Listing

Publication Analysis

Top Keywords

deep learning-based
12
generate tpa
12
carotid plaque
8
plaque segmentation
8
ultrasound images
8
carotid ultrasound
8
measurement total
8
tpa
8
carotid atherosclerosis
8
tpa measurement
8

Similar Publications

Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.

View Article and Find Full Text PDF

This paper introduces Re-DQN, a deep reinforcement learning-based algorithm for comprehensive coverage path planning in lawn mowing robots. In the fields of smart homes and agricultural automation, lawn mowing robots are rapidly gaining popularity to reduce the demand for manual labor. The algorithm introduces a new exploration mechanism, combined with an intrinsic reward function based on state novelty and a dynamic input structure, effectively enhancing the robot's adaptability and path optimization capabilities in dynamic environments.

View Article and Find Full Text PDF

The retreat of Arctic sea ice has opened new maritime routes, offering faster shipping opportunities; however, these routes present significant navigational challenges due to the harsh ice conditions. To address these challenges, this paper proposes a deep learning-based Arctic ice risk management architecture with multiple modules, including ice classification, risk assessment, ice floe tracking, and ice load calculations. A comprehensive dataset of 15,000 ice images was created using public sources and contributions from the Canadian Coast Guard, and it was used to support the development and evaluation of the system.

View Article and Find Full Text PDF

Knowing which residues of a protein are important for its function is of paramount importance for understanding the molecular basis of this function and devising ways of modifying it for medical or biotechnological applications. Due to the difficulty in detecting these residues experimentally, prediction methods are essential to cope with the sequence deluge that is filling databases with uncharacterized protein sequences. Deep learning approaches are especially well suited for this task due to the large amounts of protein sequences for training them, the trivial codification of this sequence data to feed into these systems, and the intrinsic sequential nature of the data that makes them suitable for language models.

View Article and Find Full Text PDF

Topology Design of Soft Phononic Crystals for Tunable Band Gaps: A Deep Learning Approach.

Materials (Basel)

January 2025

School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China.

The phononic crystals composed of soft materials have received extensive attention owing to the extraordinary behavior when undergoing large deformations, making it possible to provide tunable band gaps actively. However, the inverse designs of them mainly rely on the gradient-driven or gradient-free optimization schemes, which require sensitivity analysis or cause time-consuming, lacking intelligence and flexibility. To this end, a deep learning-based framework composed of a conditional variational autoencoder and multilayer perceptron is proposed to discover the mapping relation from the band gaps to the topology layout applied with prestress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!