A first look at the 'repeatome' of Benedenia humboldti, a major pathogen in yellowtail aquaculture: Repetitive element characterization, nuclear rRNA operon assembly, and microsatellite discovery.

Mar Genomics

Laboratorio Eco-parasitologia y Epidemiologia Marina (LEPyEM), Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biologicos, Universidad de Antofagasta, Angamos 601, Antofagasta, Chile. Electronic address:

Published: August 2021

The monogenean Benedenia humboldti is a pathogen of the yellowtail Seriola lalandi in the South-Eastern Pacific ocean. Using low-coverage short Illumina 150bp pair-end reads sequencing, this study examines, for the first time, the 'repeatome' (= repetitive genomic elements), including the 45S ribosomal RNA DNA operon and microsatellites, in B. humboldti. Repetitive elements comprised a large fraction of the nuclear genome and a considerable proportion of them could not be assigned to known repeat element families. Taking into account only annotated repetitive elements, the most frequent belonged to the 45S ribosomal RNA operon or were classified as satellite DNA and Class I - Long Interspersed Nuclear Elements (LINEs) which were considerably more abundant than Class I - LTR elements. The ribosomal RNA gene operon in B. humboldti is comprised of, in the following order, a 5' ETS (length = 233 bp), ssrDNA (2082 bp), ITS1 (346 bp), 5.8S rDNA (150 bp), ITS2 (572 bp), lsrDNA (3887 bp), and a 3' ETS (1097 bp). A total of 15 SSRs were identified. These newly developed genomic resources will contribute to the better understanding of meta-population connectivity in this species, cryptic species in the genus, and will advance pest management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.margen.2021.100848DOI Listing

Publication Analysis

Top Keywords

ribosomal rna
12
benedenia humboldti
8
pathogen yellowtail
8
45s ribosomal
8
repetitive elements
8
elements
5
'repeatome' benedenia
4
humboldti
4
humboldti major
4
major pathogen
4

Similar Publications

Phylogenetic position of the subfamily Symphrasinae (Insecta: Neuroptera), its intergeneric relationships and evolution of the raptorial condition within Mantispoidea.

Invertebr Syst

January 2025

Instituto de Biología, UNAM, Departamento de Zoología, Colección Nacional de Insectos, Apartado Postal 70-153, 04510, Ciudad de México, Mexico.

The superfamily Mantispoidea (Insecta: Neuroptera) includes the families Berothidae, Rhachiberothidae and Mantispidae. Among these taxa, the last two are collectively known as Raptorial Mantispoidea due to the presence of grasping forelegs for predatory habits. The Mantispidae classically included the subfamilies Symphrasinae, Drepanicinae, Calomantispinae and Mantispinae, yet recent research challenged this classification scheme as well as the monophyly of this family resulting in Symphrasinae being transferred to Rhachiberothidae.

View Article and Find Full Text PDF

Circular RNAs (circRNAs), along with their pathogenic property in non-small cell lung cancer (NSCLC), require comprehensive analyses and explanations. The study is established with the purpose to elucidate the potential molecular mechanism of circATP9A in NSCLC. CircATP9A and microRNA (miR)-582-3p were evaluated by real-time quantitative polymerase chain reaction, and ribosomal protein large P0 (RPLP0), cleaved caspase-3, cleaved Ki-67, epithelial-to-mesenchymal transition (EMT)-associated proteins (N-cadherin and E-cadherin), and core proteins of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway were by Western blot.

View Article and Find Full Text PDF

Melanoma brain metastasis (MBM) is linked to dismal prognosis, low overall survival, and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTCs) are the smallest functional units of cancer and precursors of fatal metastasis. We previously employed an unbiased multilevel approach to discover a unique ribosomal protein large/small subunits (RPL/RPS) CTC gene signature associated with MBM.

View Article and Find Full Text PDF

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of , a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy.

View Article and Find Full Text PDF

Lifecycle of an introduced (Bucephalidae) trematode in the Tone River system, Japan.

J Helminthol

January 2025

Toho University, Faculty of Science, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan.

During 2021 through 2023, the golden mussel and freshwater fishes were sampled from 28 sites in the Tone River system, Japan, and adult trematodes of were found in the fishes. Molecular and morphological analyses based on 28S rDNA and the ITS1-5.8S-ITS2 region revealed the trematode as '', previously reported in Mainland China and likely introduced to Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!