Engineering the plant microbiota in the context of the theory of ecological communities.

Curr Opin Biotechnol

Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada. Electronic address:

Published: August 2021

Crop-associated microorganisms are known to have a determining influence on crop growth and resistance to stresses. Indeed, microorganisms can deter pathogens, reduce stress levels, improve nutrition, and stimulate growth. However, the microbial communities associated with a plant are rarely optimal for agricultural needs. But how can we engineer crops-associated microbial communities? An interesting framework to address this question is the theory of ecological communities that stipulates four processes by which communities can change: 1) selection, 2) dispersal, 3) speciation and 4) ecological drift. Of these, speciation and dispersal can result in the addition of new species to the plant microbiota, whereas selection and drift can lead to the loss of species. We believe that if these mechanisms are sufficiently understood, they could be harnessed to purposefully engineer the crop microbiota. Here, we will discuss the recent efforts to modify the phenotype of plants that are aligned with these ecological processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.copbio.2021.06.009DOI Listing

Publication Analysis

Top Keywords

plant microbiota
8
theory ecological
8
ecological communities
8
engineering plant
4
microbiota context
4
context theory
4
ecological
4
communities
4
communities crop-associated
4
crop-associated microorganisms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!