Agriculture disturbs the biogeochemical cycles of major elements, which alters the elemental stoichiometry of surface stream waters, with potential impacts on their ecosystems. However, models of catchment hydrology and water quality remain relatively disconnected, even though the observation that dissolved organic carbon (DOC) and nitrate (NO) have opposite spatial and temporal patterns seems relevant for improving our representation of hydrological transport pathways within catchments. We tested the ability of a parsimonious model to simultaneously reproduce intra-annual dynamics of stream flow, DOC and NO concentrations using 15 years of daily data from a small headwater agricultural catchment (AgrHyS observatory). The model consists of an unsaturated reservoir, a slow reservoir representing the groundwater and a fast reservoir representing the riparian zone and preferential flow paths. The sources of DOC and NO are assumed to behave as infinite pools with a fixed concentration in each reservoir that contributes to the stream. Stream concentrations thus result from simple mixing of slow and fast reservoir contributions. The model simultaneously reproduced annual and storm-event dynamics of discharge, DOC and NO concentrations in the stream, with calibration KGE scores of 0.77, 0.64 and 0.58 respectively, and validation KGE scores of 0.72, 0.58 and 0.43 respectively. These results suggest that the dynamics of these concentrations can be explained by hydrological transport processes and thus by temporally variable contributions from slow (NO rich and DOC poor) and fast reservoirs (DOC rich and NO poor), with a poor representation of the biogeochemical transformations. Unexpectedly, using the concentration time series to calibrate the model increased uncertainty in the parameters that control hydrological fluxes of the model. The legacy storage of NO resulting from agricultural history in the studied catchment supports the assumption that the main DOC and NO sources behave as infinite pools at the scale of several years. Nevertheless, reproducing the long-term trends in solute concentration would require additional information about DOC and NO trends within the reservoirs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.148715 | DOI Listing |
Vet Sci
January 2025
Department of Animal Science, Universidade Federal de Viçosa, University Campus, Viçosa 36570-900, Brazil.
This study evaluated the effects of two types of plastic flooring-one with and one without nanotechnological antimicrobial additives-used as complete or partial replacements for wood shavings on broiler chicken performance, yield, meat quality, and litter microbiology over 42 days. A total of 1500 Ross 408 male broiler chicks were randomly assigned to five treatment groups: wood shavings (WS), plastic flooring (PF), a 50/50 mix of plastic flooring and wood shavings (PF + WS), plastic flooring with antimicrobial additives (PFA), and a 50/50 mix of antimicrobial plastic flooring and wood shavings (PFA + WS). This study evaluated organ biometrics (liver, heart, spleen, and gizzard), the severity of lesions, microbiological profiles, performance indices, and meat quality.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
DVGW-Research Center at the Engler-Bunte-Institute, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.
View Article and Find Full Text PDFBrain Sci
January 2025
RISE-Health, Center for Translational Health and Medical Biotechnology Research (TBIO), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal.
Background: Clinicians are challenged by the ambiguity and uncertainty in assessing level of consciousness in individuals with disorder of consciousness (DoC). There are numerous challenges to valid and reliable neurobehavioral assessment and classification of DoC due to multiple environmental and patient-related biases including behavioral fluctuation and confounding or co-occurring medical conditions. Addressing these biases could impact accuracy of assessment and is an important aspect of the DoC assessment process.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Spine Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
Objectives: To analyze the risk factors for developing dysphagia after occipitocervical fusion (OCF) and investigate possible mechanisms and prognosis.
Methods: The case data of 43 patients who underwent OCF were retrospectively reviewed. Patients were divided into group A (dysphagia group) and group B (non-dysphagia group) based on Bazaz scoring criteria.
Nat Cancer
January 2025
Center for Cancer Research, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria.
Dendritic cell (DC) activation by pattern recognition receptors like Toll-like-receptors (TLRs) is crucial for cancer immunotherapies. Here, we demonstrate the effectiveness of the TLR7/8 agonist imiquimod (IMQ) in treating both local tumors and distant metastases. Administered orally, IMQ activates plasmacytoid DCs (pDCs) to produce systemic type I interferons (IFN-I) required for TLR7/8 upregulation in DCs and macrophages, sensitizing them to topical IMQ treatment, which is essential for therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!