Aberrant placental angiogenesis is associated with fetal intrauterine growth restriction (IUGR), but the mechanism underlying abnormal placental angiogenesis remains largely unknown. Here, lower vessel density and higher expression of NADPH oxidases 2 (Nox2) were observed in the placentae for low birth weight (LBW) fetuses versus normal birth weight (NBW) fetuses, with a negative correlation between Nox2 and placental vessel density. Moreover, it was revealed for the first time that Nox2 deficiency facilitates angiogenesis in vitro and in vivo, and vascular endothelial growth factor-A (VEGF-A) has an essential role in Nox2-controlled inhibition of angiogenesis in porcine vascular endothelial cells (PVECs). Mechanistically, Nox2 inhibited phospho-signal transducer and activator of transcription 3 (p-STAT3) in the nucleus by inducing the production of mitochondrial reactive oxygen species (ROS). Dual-luciferase assay confirmed that knockdown of Nox2 reduces the expression of VEGF-A in an STAT3 dependent manner. Our results indicate that Nox2 is a potential target for therapy by increasing VEGF-A expression to promote angiogenesis and serves as a prognostic indicator for fetus with IUGR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258686 | PMC |
http://dx.doi.org/10.1016/j.redox.2021.102051 | DOI Listing |
Histochem Cell Biol
January 2025
Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.
View Article and Find Full Text PDFLife Sci
January 2025
Studies of the Physiopathology of the ovary laboratory, Institute of Biology and Experimental Medicine (IBYME) - National Scientific and Technical Research Council (CONICET), Vuelta de Obligado 2490, C1428ADL Buenos Aires, Argentina. Electronic address:
Aims: Metformin has shown beneficial effects on reproduction in women. However, its use during pregnancy remains controversial, as metformin can cross the placenta. Most studies have focused on the metabolic impact on the offspring of treated mothers, with limited information regarding its reproductive effects.
View Article and Find Full Text PDFDomest Anim Endocrinol
January 2025
Department of Animal Science, Pennsylvania State University, University Park, PA, 16802, USA. Electronic address:
Intrauterine growth restriction (IUGR) is a common condition in swine associated with high piglet mortality and morbidity that develops in early gestation. This review article explores differences in uterine and placental tissues associated with IUGR fetuses compared to their normally-grown littermates at different stages of gestation. Specifically, we will review the available knowledge to date describing differences in 1) structure, 2) cellular apoptosis and proliferation, 3) adhesion, and 4) angiogenesis in endometrial and placental tissues associated with IUGR fetuses across gestation.
View Article and Find Full Text PDFVet Med Sci
January 2025
Department of Anatomy, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey.
Background: A proper placentation is required for establishment and continuity of pregnancy. In sheep, placentomes are unique structures that enable nutrition and gas exchange between the mother and the foetus. Although placentomes are dynamic formations, there is limited knowledge of changes in placentomes during pregnancy.
View Article and Find Full Text PDFCirc Res
January 2025
Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada (C.P., S.A., J.W.A., R.L., F.N., J.S., I.C.).
Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.
Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!