Discovery of novel BCR-ABL PROTACs based on the cereblon E3 ligase design, synthesis, and biological evaluation.

Eur J Med Chem

Shanghai Institute for Advanced Immunochemical Studies, China; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China. Electronic address:

Published: November 2021

Protein degradation is a promising strategy for drug development. Proteolysis-targeting chimeras (PROTACs) hijacking the E3 ligase cereblon (CRBN) exhibit enormous potential and universal degradation performance due to the small molecular weight of CRBN ligands. In this study, the CRBN-recruiting PROTACs were explored on the degradation of oncogenic fusion protein BCR-ABL, which drives the pathogenesis of chronic myeloid leukemia (CML). A series of novel PROTACs were synthesized by conjugating BCR-ABL inhibitor dasatinib to the CRBN ligand including pomalidomide and lenalidomide, and the extensive structure-activity relationship (SAR) studies were performed focusing on optimization of linker parameters. Therein, we uncovered that pomalidomide-based degrader 17 (SIAIS056), possessing sulfur-substituted carbon chain linker, exhibits the most potent degradative activity in vitro and favorable pharmacokinetics in vivo. Besides, degrader 17 also degrades a variety of clinically relevant resistance-conferring mutations of BCR-ABL. Furthermore, degrader 17 induces significant tumor regression against K562 xenograft tumors. Our study indicates that 17 as an efficacious BCR-ABL degrader warrants intensive investigation for the future treatment of BCR-ABL leukemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2021.113645DOI Listing

Publication Analysis

Top Keywords

bcr-abl degrader
8
bcr-abl
6
discovery novel
4
novel bcr-abl
4
protacs
4
bcr-abl protacs
4
protacs based
4
based cereblon
4
cereblon ligase
4
ligase design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!