A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ActTRANS: Functional classification in active transport proteins based on transfer learning and contextual representations. | LitMetric

ActTRANS: Functional classification in active transport proteins based on transfer learning and contextual representations.

Comput Biol Chem

Department of Computer Science & Engineering, Yuan Ze University, Chungli, 32003, Taiwan. Electronic address:

Published: August 2021

Motivation: Primary and secondary active transport are two types of active transport that involve using energy to move the substances. Active transport mechanisms do use proteins to assist in transport and play essential roles to regulate the traffic of ions or small molecules across a cell membrane against the concentration gradient. In this study, the two main types of proteins involved in such transport are classified from transmembrane transport proteins. We propose a Support Vector Machine (SVM) with contextualized word embeddings from Bidirectional Encoder Representations from Transformers (BERT) to represent protein sequences. BERT is a powerful model in transfer learning, a deep learning language representation model developed by Google and one of the highest performing pre-trained model for Natural Language Processing (NLP) tasks. The idea of transfer learning with pre-trained model from BERT is applied to extract fixed feature vectors from the hidden layers and learn contextual relations between amino acids in the protein sequence. Therefore, the contextualized word representations of proteins are introduced to effectively model complex structures of amino acids in the sequence and the variations of these amino acids in the context. By generating context information, we capture multiple meanings for the same amino acid to reveal the importance of specific residues in the protein sequence.

Results: The performance of the proposed method is evaluated using five-fold cross-validation and independent test. The proposed method achieves an accuracy of 85.44 %, 88.74 % and 92.84 % for Class-1, Class-2, and Class-3, respectively. Experimental results show that this approach can outperform from other feature extraction methods using context information, effectively classify two types of active transport and improve the overall performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2021.107537DOI Listing

Publication Analysis

Top Keywords

active transport
20
transfer learning
12
amino acids
12
transport
8
transport proteins
8
types active
8
contextualized word
8
pre-trained model
8
proposed method
8
active
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!