Plant cytochrome P450 plasticity and evolution.

Mol Plant

Institute of Plant Molecular Biology, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France. Electronic address:

Published: August 2021

The superfamily of cytochrome P450 (CYP) enzymes plays key roles in plant evolution and metabolic diversification. This review provides a status on the CYP landscape within green algae and land plants. The 11 conserved CYP clans known from vascular plants are all present in green algae and several green algae-specific clans are recognized. Clan 71, 72, and 85 remain the largest CYP clans and include many taxa-specific CYP (sub)families reflecting emergence of linage-specific pathways. Molecular features and dynamics of CYP plasticity and evolution are discussed and exemplified by selected biosynthetic pathways. High substrate promiscuity is commonly observed for CYPs from large families, favoring retention of gene duplicates and neofunctionalization, thus seeding acquisition of new functions. Elucidation of biosynthetic pathways producing metabolites with sporadic distribution across plant phylogeny reveals multiple examples of convergent evolution where CYPs have been independently recruited from the same or different CYP families, to adapt to similar environmental challenges or ecological niches. Sometimes only a single or a few mutations are required for functional interconversion. A compilation of functionally characterized plant CYPs is provided online through the Plant P450 Database (erda.dk/public/vgrid/PlantP450/).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2021.06.028DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
8
plasticity evolution
8
green algae
8
cyp clans
8
biosynthetic pathways
8
cyp
7
plant
5
plant cytochrome
4
p450 plasticity
4
evolution
4

Similar Publications

Genetics and Pathophysiology of Classic Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency.

J Clin Endocrinol Metab

January 2025

Division of Pediatric Endocrinology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA.

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disease that manifests clinically in varying forms depending on the degree of enzyme deficiency. CAH is most commonly caused by 21-hydroxylase deficiency (21OHD) due to mutations in the CYP21A2 gene. Whereas there is a spectrum of disease severity, 21OHD is generally categorized into 3 forms.

View Article and Find Full Text PDF

Mononuclear Fe enzymes such as heme-containing cytochrome P450 enzymes catalyze a variety of C-H activation reactions under ambient conditions, and they represent an attractive platform for engineering reactivity through changes to the native enzyme. Using density functional theory, we study both native Fe and non-native group 8 (Ru, Os) and group 9 (Ir) metal centers in an active site model of P450. We quantify how changing the metal changes spin state preferences throughout the catalytic cycle.

View Article and Find Full Text PDF

Heterologous Biosynthesis of Terpenoids in Saccharomyces cerevisiae.

Biotechnol J

January 2025

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Terpenoids are widely distributed in nature and have various applications in healthcare products, pharmaceuticals, and fragrances. Despite the significant potential that terpenoids possess, traditional production methods, such as plant extraction and chemical synthesis, face challenges in meeting current market demand. With the advancement of synthetic biology and metabolic engineering, it becomes feasible to construct efficient microbial cell factories for large-scale production of terpenoids.

View Article and Find Full Text PDF

Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta.

View Article and Find Full Text PDF

Dexlansoprazole acts as a disruptor of the aryl hydrocarbon receptor and ITE.

Food Chem Toxicol

January 2025

Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC. Electronic address:

Dexlansoprazole, a proton pump inhibitor, is commonly used to treat gastro-oesophageal reflux disease and erosive esophagitis. The activated aryl hydrocarbon receptor (AhR) functions as a transcription factor by binding to the aryl hydrocarbon response element (AHRE) of its target genes, with cytochrome P450 (CYP) 1A1 being the most well-known target. In this study, we demonstrated that dexlansoprazole stimulates AhR activity, leading to increased CYP1A1 expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!