Mesoscale microscopy and image analysis tools for understanding the brain.

Prog Biophys Mol Biol

Sainsbury Wellcome Centre, University College London, 25 Howland Street, London, W1T 4JG, United Kingdom. Electronic address:

Published: January 2022

Over the last ten years, developments in whole-brain microscopy now allow for high-resolution imaging of intact brains of small animals such as mice. These complex images contain a wealth of information, but many neuroscience laboratories do not have all of the computational knowledge and tools needed to process these data. We review recent open source tools for registration of images to atlases, and the segmentation, visualisation and analysis of brain regions and labelled structures such as neurons. Since the field lacks fully integrated analysis pipelines for all types of whole-brain microscopy analysis, we propose a pathway for tool developers to work together to meet this challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786668PMC
http://dx.doi.org/10.1016/j.pbiomolbio.2021.06.013DOI Listing

Publication Analysis

Top Keywords

whole-brain microscopy
8
mesoscale microscopy
4
microscopy image
4
analysis
4
image analysis
4
analysis tools
4
tools understanding
4
understanding brain
4
brain ten
4
ten years
4

Similar Publications

Protocol for the visualization of pRps6-positive cells in larval zebrafish brains using whole-mount immunofluorescence and light-sheet microscopy.

STAR Protoc

January 2025

Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland; Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland. Electronic address:

Due to their small size and transparency, larval zebrafish are a useful model for whole-brain imaging. Here, we present a protocol for the visualization of phosphorylated Rps6, a marker of mechanistic target of rapamycin complex 1 (mTORC1) activity, in the zebrafish brains at 5 days post fertilization (dpf), using whole-mount immunofluorescence and light-sheet microscopy. We describe steps for sample preparation, storage, staining, and imaging.

View Article and Find Full Text PDF

We develop a data harmonization approach for C. elegans volumetric microscopy data, consisting of a standardized format, pre-processing techniques, and human-in-the-loop machine-learning-based analysis tools. Using this approach, we unify a diverse collection of 118 whole-brain neural activity imaging datasets from five labs, storing these and accompanying tools in an online repository WormID (wormid.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is the most common form of dementia and one of the leading causes of death. AD is known to be correlated to tortuosity in the microvasculature as well as decreases in blood flow throughout the brain. However, the mechanisms behind these changes and their causal relation to AD are poorly understood.

View Article and Find Full Text PDF

Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.

View Article and Find Full Text PDF

A long-standing goal of neuroimaging is the non-invasive volumetric assessment of whole brain function and structure at high spatial and temporal resolutions. Functional ultrasound (fUS) and ultrasound localization microscopy (ULM) are rapidly emerging techniques that promise to bring advanced brain imaging and therapy to the clinic with the safety and low-cost advantages associated with ultrasound. fUS has been used to study cerebral hemodynamics at high temporal resolutions while ULM has been used to study cerebral microvascular structure at high spatial resolutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!