Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pot experiments with alfalfa, milkvetch root and swamp morning glory were conducted to elucidate the effect of soil vanadium (V) on plant growth and to evaluate their phytoremediation potential under V(V) exposure. Based on biomass analysis, swamp morning glory showed higher tolerance than alfalfa and milkvetch root in response to different soil V(V) levels. The accumulation of V in plants increased with the increasing soil V and the V concentration in roots was 1.95-4.31 times that in shoots. After planting, soil total V, V(V), bioavailable V and water-soluble V all reduced, and the decreases in bioavailable V and V(V) showed significant. The decreased percentage of V(V) in total V in soils demonstrated that the planting process may stimulate the mechanism of V(V) reduction to V(IV). Therefore, the three tested plants, particularly swamp morning glory can be promising phytostabilizers applied to V phytoremediation practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-021-03309-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!