AI Article Synopsis

  • A new method using zirconium nanoparticles for extracting lead from wastewater was developed, optimizing various factors like pH and nanoparticle amount for better results.
  • The zirconium nanoparticles were made through a simple reduction process and served as a selective adsorbent to capture lead ions from water.
  • Results showed a strong correlation in lead detection with a low limit of detection, high recovery rates, and a reliable calibration range, proving the method's effectiveness and accuracy for environmental testing.

Article Abstract

In this paper, a sensitive and simple zirconium nanoparticles (Zr-NPs) based vortex assisted ligandless dispersive solid phase extraction (VA-LDSPE) method was developed for the preconcentration of lead from wastewater samples for the determination by slotted quartz tube-flame atomic absorption spectrometry (SQT-FAAS). Zr-NPs were synthesized using zirconium (IV) chloride salt as a starting material through a simple reduction process with sodium borohydride, and used as selective adsorbent for the extraction of lead ions from aqueous medium. Single variant experiments were carried out for all optimizations of sorption/desorption steps including pH of solution, amount of nanoparticles, mixing type/period and eluent type. An SQT with five round slots was placed onto the burner of FAAS to increase the interaction between lead atoms and light from radiation source to enhance the absorbance signals. Under the determined optimum conditions, analytical figures of merit were evaluated and the limit of detection and quantification (LOD/LOQ) values were calculated as 5.2 and 17.3 µg L, respectively. The developed method showed a linear calibration range between 25 and 250 µg L with a good regression coefficient value (0.9995). Recovery studies were also performed with domestic wastewater samples spiked at three concentrations and percent recovery values obtained in the range of 97%-102% validated the developed method's applicability and accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-021-03318-0DOI Listing

Publication Analysis

Top Keywords

zirconium nanoparticles
8
based vortex
8
vortex assisted
8
assisted ligandless
8
ligandless dispersive
8
dispersive solid
8
solid phase
8
phase extraction
8
domestic wastewater
8
atomic absorption
8

Similar Publications

Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.

View Article and Find Full Text PDF

Light-Directed Self-Powered Metal-Organic Framework Based Nanorobots for Deep Tumor Penetration.

Adv Mater

December 2024

Frontiers Science Centre for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Effective intratumoral distribution of anticancer agents with good tumor penetration is of great practical importance for oncotherapy. How to break the limitation of traditional passive drug delivery relying on blood circulatory system into solid tumors remains a challenge. Herein, a light-directed self-powered nanorobot based on zirconium-based porphyrin metal-organic framework (MOF) is reported for smart delivery of chemodrug and photosensitizer for deep tumor penetration.

View Article and Find Full Text PDF

Artificial N fixation via the electrocatalytic nitrogen (N) reduction reaction (NRR) has been recently promoted as a rational route toward reducing energy consumption and CO emission as compared with the traditional Haber-Bosch process. Nevertheless, optimizing NRR relies on developing highly efficient electrocatalysts. Herein, we report on the reliable and reproducible synthesis of two promising electrocatalysts in either the presence or absence of Ketjenblack (KB), namely, ZrO-ZrN@KB and ZrO-ZrN systems, synthesized through the nitriding of Zr.

View Article and Find Full Text PDF

Numerous conduits have been developed to improve peripheral nerve regeneration. However, challenges remain, including remote control of conduit function, and programmed cell behaviors like orientation. We synthesized FeO-MnO@Zirconium-based Metal-organic frameworks@Retinoic acid (FMZMR) core-shell and assessed their impact on Schwann cell function and behavior within conduits made from decellularized human umbilical arteries (DHUCA) under magnetic field (MF).

View Article and Find Full Text PDF

Research for novel compounds that may block bacterial development has continued and prompted by antibiotic-resistant bacteria. The expenses of community for health care as a result of antibiotic resistance has indeed been remarkable during the last decades and demand immediate of medical attention. Consequently, this research presents the antibacterial effect of genuine metal oxide nanoparticles against () and that have been isolated from urinary tract infection patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!