[Combinations of pharmacological treatments in smoking cessation. A systematic review].

Rev Mal Respir

Unité de recherche clinique, université de Poitiers, centre hospitalier Henri-Laborit, 370, avenue Jacques-Cœur, CS 10587, 86021 Poitiers, France.

Published: September 2021

Introduction: The effectiveness of the three validated smoking cessation medications, nicotine replacement therapy, varenicline and bupropion, may be insufficient, in hard-core smokers.

Objectives: This systematic review investigates the efficacy of combinations of different medications in smoking abstinence and their tolerability.

Results: Three randomized controlled trials (RCTs) compared the combined medications with varenicline and nicotine patches vs. varenicline; two found an increase in abstinence rates with the combined medications. In one study, the beneficial effect was only observed in heavy smokers. The four RCTs comparing the combined medications with varenicline and bupropion (vs. varenicline) demonstrated an increase in abstinence rates with the combined medications, most often in heavy smokers who are very dependent on tobacco. The results of the three RCTs comparing the combined medications with bupropion and nicotine replacement therapy vs. varenicline were discordant. Three studies included other molecules (mecamylamine, selegiline, sertraline, buspirone). Combined medications were well tolerated.

Conclusion: Combination treatments can achieve higher smoking abstinence rates than monotherapies, especially in smokers who have failed to quit (Hard-core smokers). Treatment with a combination of varenicline and nicotine replacement therapy is a therapeutic option in smoking cessation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rmr.2021.05.012DOI Listing

Publication Analysis

Top Keywords

combined medications
24
smoking cessation
12
nicotine replacement
12
replacement therapy
12
abstinence rates
12
medications
8
therapy varenicline
8
varenicline bupropion
8
smoking abstinence
8
medications varenicline
8

Similar Publications

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.

J Biophotonics

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.

View Article and Find Full Text PDF

Targeting MAPK14 by Lobeline Upregulates Slurp1-Mediated Inhibition of Alternative Activation of TAM and Retards Colorectal Cancer Growth.

Adv Sci (Weinh)

January 2025

Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.

Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs.

View Article and Find Full Text PDF

A Baicalin-Based Functional Polymer in Dynamic Reversible Networks Alleviates Osteoarthritis by Cellular Interactions.

Adv Sci (Weinh)

January 2025

Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, Guangdong, 510630, China.

Osteoarthritis (OA) is increasingly recognized as a whole-organ disease predominantly affecting the elderly, characterized by typical alterations in subchondral bone and cartilage, along with recurrent synovial inflammation. Despite the availability of various therapeutics and medications, a complete resolution of OA remains elusive. In this study, novel functional hydrogels are developed by integrating natural bioactive molecules for OA treatment.

View Article and Find Full Text PDF

Orthopedic, maxillofacial, and complex dentoalveolar bone grafting procedures that require donor-site bone harvesting can be associated with post-surgical complications. There has been widespread adoption of exogenously sourced particulate bone graft materials (BGM) for bone regenerative procedures; however, the particulate nature of these materials may lead to compromised healing outcomes, mainly attributed to structural collapse of the BGM, prolonged tissue healing. In this study, a fully synthetic thermoresponsive hydrogel-based universal carrier matrix (TX) that forms flowable and shapable putties with different BGMs while spatially preserving the particles in a 3D scaffold at the implantation site is introduced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!