Background: Stroke is a major cause of mortality and morbidity. Also, free radicals and oxidative stress are deleterious factor in the stroke progression. We aimed to evaluate the association between oxidative stress markers and odds of having risk factor for stroke or developing stroke.

Methods: The present case-control study was conducted on 556 participants in Imam-Reza hospital, Tabriz, Iran. Subjects were divided into three group, including individuals with acute ischemic stroke, those who were at risk of stroke, and healthy controls. All enrolled participants except for controls underwent neurological examinations and brain magnetic resonance imaging (MRI). Stroke-related disability and stroke severity were evaluated by modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS), respectively. Serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were measured within 48 h of the initiation of stroke. One-way ANOVA and Chi-square tests were used for comparing characteristics between groups. Multivariable logistic regression was implemented for odds of stroke based on MDA and TAC quartiles. Also, Spearman's correlation was utilized.

Results: Serum MDA, systolic and diastolic blood pressure, cholesterol, and triglyceride were significantly higher in the stroke group than controls. High levels of MDA were associated with increased development of stroke (P-value < 0.001), however TAC and MDA were not associated with having risk factors for stroke (P-value = 1.00 and 0.27, respectively). Also, TAC level was negatively associated with baseline (ρ = - 0.28; P-value = 0.04) and follow-up (ρ = - 0.31; P-value = 0.03) NIHSS scores. Moreover, MDA was correlated with mRS score at follow-up (ρ = - 0.26; P-value = 0.04).

Conclusions: The balance between antioxidants and oxidants markers might reveal a new approach in this context. Further studies are warranted to identify the source of oxidative stress as well as cessation of the production of oxygen radicals in stroke.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8252289PMC
http://dx.doi.org/10.1186/s12883-021-02257-xDOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
stroke
12
stress markers
8
acute ischemic
8
ischemic stroke
8
case-control study
8
factor stroke
8
significance oxidative
4
markers one-year
4
one-year prognosis
4

Similar Publications

The present study was designed to evaluate the protective efficacy of troxerutin against cypermethrin-induced behavioral defects, motor function abnormalities, and oxidative stress in mice. Twenty-four adult female albino mice were randomly divided into four equal groups. The first group served as control, the second group was treated with cypermethrin (20 mg/kg b.

View Article and Find Full Text PDF

HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.

View Article and Find Full Text PDF

This review explores the intricate relationship between glaucoma and circadian rhythm disturbances. As a principal organ for photic signal reception and transduction, the eye plays a pivotal role in coordinating the body's circadian rhythms through specialized retinal ganglion cells (RGCs), particularly intrinsically photosensitive RGCs (ipRGCs). These cells are critical in transmitting light signals to the suprachiasmatic nucleus (SCN), the central circadian clock that synchronizes physiological processes to the 24-hour light-dark cycle.

View Article and Find Full Text PDF

The Warburg Effect: Is it Always an Enemy?

Front Biosci (Landmark Ed)

November 2024

Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus.

The Warburg effect, also known as 'aerobic' glycolysis, describes the preference of cancer cells to favor glycolysis over oxidative phosphorylation for energy (adenosine triphosphate-ATP) production, despite having high amounts of oxygen and fully active mitochondria, a phenomenon first identified by Otto Warburg. This metabolic pathway is traditionally viewed as a hallmark of cancer, supporting rapid growth and proliferation by supplying energy and biosynthetic precursors. However, emerging research indicates that the Warburg effect is not just a strategy for cancer cells to proliferate at higher rates compared to normal cells; thus, it should not be considered an 'enemy' since it also plays complex roles in normal cellular functions and/or under stress conditions, prompting a reconsideration of its purely detrimental characterization.

View Article and Find Full Text PDF

The prevalence of sperm DNA fragmentation (SDF) is significantly higher in males with infertility, which is often associated with oligozoospermia and hypospermia. It can also occur in patients with infertility who have normal conventional semen indicators. The etiologies involve aberrations in sperm maturation, dysregulated apoptotic processes, and heightened levels of oxidative stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!