In natural environments, Acid Volatile Sulfides (AVS) contained in anoxic waters or sediments, are composed of dissolved sulfides and neo-formed sulfides colloids or particles. Under acidic addition, AVS emit hydrogen sulfide gas and release the so-called simultaneously extracted metals (SEM). The measurement of AVS coupled with that of the SEM enables to evaluate the metal trapping capacity of sulfides in the environment. Because AVS are extremely reactive to oxidation, the most accurate methodology to quantify AVS and SEM requires to be able to process the samples extraction on-site, directly after sampling and avoiding oxygen exposure. However, most of available systems are based on glassware 'purge and trap' techniques developed for the laboratory and are not often adapted to field studies. In these systems, AVS extraction time can range from 30 min to 3 h with relative standard deviation from 7 to 44%. In this study, we developed a new 'purge and trap' system designed for both laboratory use and field AVS/SEM extractions. The system is optimized with a shortened extraction time, miniaturized, unbreakable, easy and reproducible to develop parallel extraction benches. Analytical yields, precision and stability have been improved, allowing to reduce the extraction time to 1 h with an absolute quantification limit of 0.12 μmol S(-II) with a relative standard deviation between 7 and 11% and under a complete extraction efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2021.122490 | DOI Listing |
Food Chem X
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Herein, the miniaturized thermal purge-and-trap (MTPT) device combined with self-calibration colorimetric/surface-enhanced Raman spectroscopy (SERS) dual-model optical sensors were designed for effective analysis of sulfur dioxide (SO) in wine. The SO can be rapidly separated from wine and enriched by MTPT device, ensuring colorimetric/SERS dual-model optical sensing based on Karl Fischer reaction. The high separation efficiency of miniaturized MTPT device combined with self-calibration of dual-model optical sensors significantly alleviate matrix interference and improve the detection accuracy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2025
Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin 541199, PR China. Electronic address:
Resonance Light Scattering (RLS) is a sensitive analytical technology hindered by its susceptibility to impurities in complex samples. This study introduces a combination of RLS with a high-efficiency sample preparation device, the Miniaturized Thermal-Assisted Purge-and-Trap (MTAPT), enhancing RLS's effectiveness in complex sample analysis. Specifically, we utilized MTAPT-RLS for the indirect screening of illegal hydrochloride drug additions in health products, based on three considerations: the transformation of bound HCl in hydrochloride drugs into volatile HCl under strong acid and heat; the minimal Cl content in health products for taste purposes; and the detectability of Cl ions by RLS upon the addition of AgNO and a stabilizer.
View Article and Find Full Text PDFBull Environ Contam Toxicol
December 2024
State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
Accurate quantification of neurotoxic methylmercury (MeHg) in environmental samples is crucial for exploring its formation, behaviors, and risks. Here, we developed and optimized an alkaline digestion-manual purge trap/gas chromatography-cold atomic fluorescence spectrometry (GC-CVAFS) method for the quantification of MeHg in solid matrix samples such as sediments, soils or sedimentary rocks. The alkaline digestion method yielded higher recoveries of MeHg than the acid extraction method.
View Article and Find Full Text PDFChemosphere
November 2024
Technical University of Denmark, DTU Offshore, 2800 Lyngby, Denmark. Electronic address:
Anal Chim Acta
September 2024
Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
Background: Mercury (Hg), especially methylmercury (MeHg) as a most toxic format of Hg in the environment, has been paid widely concern due to its high bioaccumulative capability and great risk to humans. Great efforts have been made to develop ethylation-purge and trap-gas chromatography-inductively coupled plasma mass spectrometry system for MeHg analysis and Hg biogeochemical cycling investigation. However, the generally manual operation limits the analytical efficiency, and the lack of applications in the real environmental samples restricts the future study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!