It has been confirmed that endogenous glycopeptide plays an important role in a variety of pathological and physiological processes. However, direct analysis of endogenous glycopeptide is still a great challenge owing to the low abundance of endogenous glycopeptides and the presence of a large number of interfering substances such as large-sized proteins and heteropeptides in complex biological sample. Herein, we reported a novel bowl-like mesoporous polydopamine nanoparticle modified by carrageenan (denoted as MPDA@PEI@CA) with strong hydrophilicity and size-exclusion effect for high specificity enrichment of endogenous glycopeptides. Thanks to the suitable pore channel structure as well as strong hydrophilic surface, the as-prepared MPDA@PEI@CA nanoparticles exhibited prominent performance in enrichment of N-linked glycopeptide with ultrahigh selectivity (1:5000 M ratio of horseradish peroxidase (HRP) digests/bovine serum albumin (BSA) digests), low detection limit (5 fmol μL), outstanding size-exclusion ability (1:1000 mass of HRP/BSA), and unique reusability (five times). 125 N-glycosylation sites of 134 glycopeptides from 65 glycoproteins were identified from 2 μL sample of human serum treated with the MPDA@PEI@CA nanoparticles, which manifested the ability to enrich endogenous N-linked glycopeptides from complex biological samples. These results indicated that the bowl-like MPDA@PEI@CA nanoparticles with novel structure prepared in this work had great potential for glycopeptidome analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2021.122468 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!