Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanozymes are artificial enzymes, which can substitute natural enzymes for wide range of catalysis-based applications. However, it is challenging to explore novel mimic enzymes or multi-enzyme mimics. Herein we report the facile preparation of uniform CuS nanoclusters (NCs), which possessed outstanding tetra-enzyme mimetic catalytic activities, including peroxidase (POD)-mimics, catalase (CAT)-mimics, ascorbic acid oxidase (AAO)-mimics and superoxide dismutase (SOD)-mimics. The catalytic mechanism of POD-like was coming from the oxygen vacancies of CuS. Furthermore, the steady-state kinetics of POD-, CAT- and AAO mimics of CuS NCs were systematically explored. On basis of the enzymatic cascade reaction that acid phosphatase (ACP) involved in a weak acidic environment, in the presence of O-phenylenediamine, quinoxaline fluorescent substance will be generated. Thus, a fluorescent biosensor platform was proposed for detection of ACP with the linear range of 0.05-25 U L and limit of detection of 0.01 U L. The as-proposed method was applicable to real serum sample detection accurately and reproducibly. Considering the simple preparation, good stability, excellent multi-enzyme activities and controllable experimental operation, CuS NCs would provide a basis for expanding to other biocatalytic and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2021.122594 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!