Amyotrophic Lateral Sclerosis (ALS) is a progressive and incurable neurodegenerative disorder characterized by the degeneration of motor neurons leading to severe muscle atrophy, respiratory failure and death within 3-5 years of disease onset. Missense mutations in Angiogenin (ANG) cause ALS through loss of either ribonucleolytic activity or nuclear translocation activity or both of these functions. Although loss-of-function mechanisms of several rare and ALS-causing ANG variants have been studied before, the structure-function relationship and subsequent functional loss mechanisms of certain novel and uncharacterized rare variants have not been deciphered hitherto. In this study, the structural and dynamic properties of the distantly-located I71V variant, on the functional sites of ANG have been investigated to understand its role in ALS etiology and progression. The I71V variant has a minor allele frequency of <0.06% and thus is classified as a rare variant. Our extensive in silico investigation comprising 1-μs molecular dynamics (MD) simulations, conformational dynamics and related integrated analyses reveal that the I71V variant induces a characteristic conformational switching of catalytic His114 residue resulting in loss of ribonucleolytic activity. Molecular docking and a residue-residue interaction network propagated by an allosteric pathway further support these findings. Moreover, while no conformational alteration of nuclear localization signal governing the nuclear translocation activity was observed, an escalation in mutant plasticity was detected in the structural and essential dynamics simulations. Overall, our study emphasizes that the structure-function relationship of frequently mutating novel ANG variants needs to be established and prioritized in order to advance the pathophysiology and therapeutics of ALS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2021.104602 | DOI Listing |
Commun Chem
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.
Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS.
View Article and Find Full Text PDFCommun Biol
January 2025
Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry-Courcouronnes, France.
Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), in which TDP-43, a nuclear RNA-binding protein, forms cytoplasmic inclusions. Here, we have developed a robust and automated method to assess protein self-assembly in the cytoplasm using microtubules as nanoplatforms. Importantly, we have analyzed specifically the self-assembly of full-length TDP-43 and its mRNA binding that are regulated by the phosphorylation of its self-adhesive C-terminus, which is the recipient of many pathological mutations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
The formation of superoxide dismutase 1 (SOD1) filaments has been implicated in amyotrophic lateral sclerosis (ALS). Although the disulfide bond formed between Cys57 and Cys146 in the active state has been well studied, the role of the reduced cysteine residues, Cys6 and Cys111, in SOD1 filament formation remains unclear. In this study, we investigated the role of reduced cysteine residues by determining and comparing cryoelectron microscopy (cryo-EM) structures of wild-type (WT) and C6A/C111A SOD1 filaments under thiol-based reducing and metal-depriving conditions, starting with protein samples possessing enzymatic activity.
View Article and Find Full Text PDFNeurol Genet
February 2025
University of Utah, Salt Lake City.
Spinocerebellar ataxias (SCAs) are dominantly inherited diseases that lead to neurodegeneration in the cerebellum and other parts of the nervous system. This review examines the progress that has been made in SCA2 from its initial clinical description to discovery of DNA CAG-repeat expansions in the gene. repeat alleles cover the range from recessive and dominant mendelian alleles to risk alleles for amyotrophic lateral sclerosis.
View Article and Find Full Text PDFFront Neurol
January 2025
Department of Human Neurosciences, Sapienza University, Rome, Italy.
Background/aims: Oro-pharyngeal dysfunction has been reported in Amyotrophic Lateral Sclerosis (ALS). We aimed to assess ALS patients upper gastrointestinal (GI) motor activity and GI symptoms according to bulbar and spinal onset and severity of ALS.
Methods: ALS bulbar (B) and spinal (S) patients with ALS Functional Rating Scale (ALSFRS-r) ≥35, bulbar sub-score ≥10, and Forced Vital Capacity (FVC) >50%, underwent to: Fiberoptic Endoscopic Evaluation of Swallowing (FEES); esophageal manometry; gastric emptying; Rome symptom questionnaire.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!