Objective: In this article, IDAC-Dose2.1 and OLINDA computer codes are compared as they are the most widely used software tools for internal dosimetry assessment at the present time. OLINDA/EXM personal computer code was created as a replacement for the widely used MIRDOSE3.1 code. IDAC-Dose2.1 was developed based on the ICRP specific absorbed fractions and computational framework of internal dose assessment given for reference adults in ICRP Publication 133. IDAC uses cumulated activities per administered activity in hours and calculates the absorbed dose and the effective dose. The program calculates the dose in the Eckerman stylized family phantoms. It is useful in standardizing and automating internal dose calculations, assessing doses in clinical trials with radiopharmaceuticals, making theoretic calculations for existing pharmaceuticals, teaching, and other purposes.

Methods: To produce such a comparison, the results of this work were compared with available published data in the literature on radiopharmaceuticals. Radiopharmaceuticals with Zr, Sm, Lu radionuclides are used as the basis for the comparison. Zr, Sm, Lu radionuclides are regarded as the future of radiopharmaceutical treatment. For Zr, two different labelled carriers, Zr-89_cMAb U36 and Zr-89 Panitumumab, were used on patients.

Results: The results show a clear difference in terms of absorbed dose of the Zr-89 radiopharmaceuticals for red bone marrow when calculated by IDAC-Dose2.1 (0.76 mGy/MBq), while the estimated absorbed dose in literature results is 0.07 mGy/MBq and 0.14 mGy/MBq when the calculation is done by OLINDA program. In the case of Lu-EDTMP, the absorbed dose in red bone marrow is in reasonable agreement (0.63 mGy/MBq and 0.8 mGy/MBq for IDAC-Dose2.1 and OLINDA, respectively). A significant difference was found for the absorbed dose in the bone surface, which was almost twice as high for OLINDA (2.1 mGy/MBq for IDAC-Dose2.1 and 5.4 mGy/MBq for OLINDA). In some direct cases, the calculated absorbed dose in the urinary bladder wall with OLINDA is ten times higher compared to WinAct (which was utilized to calculate the total activity in the organs and tissues) and IDAC 2.1. These results are considered key to greater accuracy in internal dose calculation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2021.109841DOI Listing

Publication Analysis

Top Keywords

absorbed dose
28
dose
12
idac-dose21 olinda
12
internal dose
12
dose zr-89
8
red bone
8
bone marrow
8
mgy/mbq idac-dose21
8
olinda
7
absorbed
7

Similar Publications

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

Construction of tetrahedral mesh phantom for Chinese women of childbearing age.

J Radiol Prot

January 2025

Department of Mechanical Engineering, University of Houston, Houston, 77204, UNITED STATES.

Although the Boundary Representation (BREP) method creates detailed surface phantoms of Chinese women of childbearing age, these phantoms cannot be directly used in Monte Carlo simulations. They must first be converted into voxel phantoms, a process that may diminish some of the inherent advantages of the surface phantoms. Therefore, the aim of this study is to construct a tetrahedral mesh (TM) phantom of Chinese women of childbearing age based on the BREP phantom, incorporating micron-level structural refinements to certain organ tissues while maintaining the original model's structure.

View Article and Find Full Text PDF

Background: Successful isolation of the superior vena cava (SVC) using a functional conduction block between the right atrium (RA) and SVC has been documented. However, a comparison of this approach with the conventional method (CM) of circumferential ablation of the RA-SVC junction, based on angiography, remains unexplored.

Objective: In this study, we employed the innovative omnipolar mapping technology (OT) to discern the RA-SVC connection and compared clinical outcomes with those from CM.

View Article and Find Full Text PDF

Future long duration space missions will expose astronauts to higher doses of galactic cosmic radiation (GCR) than those experienced on the international space station. Recent studies have demonstrated astronauts may be at risk for cardiovascular complications due to increased radiation exposure and fluid shift from microgravity. However, there is a lack of direct evidence on how the cardiovascular system is affected by GCR and microgravity since no astronauts have been exposed to exploratory mission relevant GCR doses.

View Article and Find Full Text PDF

Space missions have revealed certain disincentive factors of this unique environment, such as microgravity, cosmic radiation, etc., as the aerospace industry has made substantial progress in exploring deep space and its impacts on human body. Galactic cosmic radiation (GCR), a form of ionizing radiation, is one of those environmental factors that has potential health implications and, as a result, may limit the duration - and possibly the occurrence - of deep-space missions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!