A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancement in reactivity via sulfidation of FeNi@BC for efficient removal of trichloroethylene: Insight mechanism and the role of reactive oxygen species. | LitMetric

A novel catalyst of sulfidated iron-nickel supported on biochar (S-FeNi@BC) was synthesized to activate persulfate (PS) for the removal of trichloroethylene (TCE). A number of techniques including XRD, SEM, TEM, FTIR, BET and EDS were employed to characterize S-FeNi@BC. The influence of sulfur to iron ratio (S/F) on TCE removal was investigated by batch experiments and a higher TCE removal (98.4%) was achieved at 0.22/1 ratio of S/F in the PS/S-FeNi@BC oxidation system. A dominant role in iron species conversion was noticed by the addition of sulfur in FeNi@BC system. Significant enhancement in recycling of the dissolved and surface Fe(II) was confirmed which contributed to the generation of free and surface-bound active radical species (OH, O, O, SO). Further, the presence and contribution of these radicals were validated by the electron paramagnetic resonance (EPR) and quenching study. In addition, XPS results demonstrated the dominant role of S(-II) with the increase of Fe(II) from 36.3% to 58.6% and decrease of Fe(III) from 52.1% to 39.8% in the PS/S-FeNi@BC system. In crux, the influence of initial pH, catalyst dosage, oxidant dosage, and inorganic ions (HCO, Cl, NO and SO) on TCE removal was also investigated. The findings obtained from this study suggest that S-FeNi@BC is an appropriate catalyst to activate PS for TCE contaminated groundwater remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148674DOI Listing

Publication Analysis

Top Keywords

tce removal
12
removal trichloroethylene
8
ratio s/f
8
removal investigated
8
dominant role
8
removal
5
tce
5
enhancement reactivity
4
reactivity sulfidation
4
sulfidation feni@bc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!