Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A novel catalyst of sulfidated iron-nickel supported on biochar (S-FeNi@BC) was synthesized to activate persulfate (PS) for the removal of trichloroethylene (TCE). A number of techniques including XRD, SEM, TEM, FTIR, BET and EDS were employed to characterize S-FeNi@BC. The influence of sulfur to iron ratio (S/F) on TCE removal was investigated by batch experiments and a higher TCE removal (98.4%) was achieved at 0.22/1 ratio of S/F in the PS/S-FeNi@BC oxidation system. A dominant role in iron species conversion was noticed by the addition of sulfur in FeNi@BC system. Significant enhancement in recycling of the dissolved and surface Fe(II) was confirmed which contributed to the generation of free and surface-bound active radical species (OH, O, O, SO). Further, the presence and contribution of these radicals were validated by the electron paramagnetic resonance (EPR) and quenching study. In addition, XPS results demonstrated the dominant role of S(-II) with the increase of Fe(II) from 36.3% to 58.6% and decrease of Fe(III) from 52.1% to 39.8% in the PS/S-FeNi@BC system. In crux, the influence of initial pH, catalyst dosage, oxidant dosage, and inorganic ions (HCO, Cl, NO and SO) on TCE removal was also investigated. The findings obtained from this study suggest that S-FeNi@BC is an appropriate catalyst to activate PS for TCE contaminated groundwater remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.148674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!