Excess nitrogen in the Bohai and Yellow seas, China: Distribution, trends, and source apportionment.

Sci Total Environ

Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China. Electronic address:

Published: November 2021

The Bohai and Yellow seas are marginal seas of the western North Pacific, characterized by coastal eutrophication and populated coastlines. In this work, six survey datasets collected between 2011 and 2018 were used to investigate the excess of dissolved inorganic nitrogen (DIN) related to soluble reactive phosphorus (SRP), referred to as N*, in the Bohai and Yellow seas. High N* of more than 5 μmol kg occurred mostly in the Changjiang and Yellow River plumes and/or near the Jiangsu coast. Away from these river plumes and the Jiangsu coast, however, N* usually ranged from -2.5 to 1.0 μmol kg. Combining our field data and previously published data, we found that N* in the Bohai and Yellow seas increased in the 1990s and 2000s, likely caused by the combined effect of atmospheric nitrogen deposition increase and the Kuroshio N* rise. In the 2010s, however, the coastal N* increases stopped. Based on a N*-budgeting approach, marine N (either from in situ decomposition of marine organic matters or from the open seas via current inputs) and non-marine N (either from riverine inputs or from local atmospheric nitrogen deposition) were distinguished. Marine N accounted for 51% ± 38% of DIN in the Bohai Sea and 67% ± 37% of DIN in the Yellow Sea. Although this is a regional study, we suggest that accumulation of atmospheric nitrogen along oceanic circulation pathways dominates the decadal evolution of coastal eutrophication. These findings and new insights may improve management of eutrophication in these two important marginal seas, and will also improve our understanding of nutrient dynamics in other marine systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148702DOI Listing

Publication Analysis

Top Keywords

bohai yellow
16
yellow seas
16
atmospheric nitrogen
12
marginal seas
8
coastal eutrophication
8
river plumes
8
jiangsu coast
8
nitrogen deposition
8
seas
7
yellow
6

Similar Publications

Seagrasses represent a significant class of marine foundation species, yet the distribution of seagrasses in the Yellow Sea and Bohai Sea remains uncertain, thereby impeding the efficacy of conservation and restoration practices. In this study, the spatial and temporal distribution pattern of seagrasses was simulated by the MaxEnt model based on the construction of marine environment and human activity datasets. The main controlling factors affecting seagrass potential distribution were analyzed, and the response of seagrass distribution to global change was clarified.

View Article and Find Full Text PDF

Near complete genome assembly of Yadong trout (Salmo trutta).

Sci Data

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.

The Yadong trout (Salmo trutta), a species endemic to the Yatung River in Tibet, China, was classified as a second-class protected species in the 20th century. Now, it is considered one of the most important fishery resources in China. In this study, we assembled a near-complete genome of the S.

View Article and Find Full Text PDF

The transport, distribution, and budget of anthropogenic I in the Bohai and North Yellow Seas, China.

J Hazard Mater

January 2025

State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China. Electronic address:

The potential release of radionuclides threatens marine ecosystems with the rapid development of coastal nuclear power plants in China. However, transport, dispersion, and final budget of anthropogenic radionuclides remain unclear, especially in the Bohai and North Yellow Seas, which are semi-enclosed marginal seas with poor water exchange. This study analyzed anthropogenic I concentration (a typical product of nuclear power plant operations) in seawater samples from this area.

View Article and Find Full Text PDF

Insights into plutonium in marine biota along the coast of China.

J Hazard Mater

January 2025

State Key Laboratory of Loess and Quaternary Geology, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, PR China; Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, PR China. Electronic address:

Radiation risk through seafood consumption is a big public concern under the discharge of nuclear contaminated water. Plutonium is an important radionuclide in view of radiation risk due to its high radiological and chemical toxicity, as well as consistent presence in the environment. The distribution and level of plutonium isotopes (Pu, Pu) in marine biota collected along the coast of China in 2022-2023 were investigated.

View Article and Find Full Text PDF

The abiologically and biologically driving effects on organic matter in marginal seas revealed by deep learning-assisted model analysis.

Sci Total Environ

January 2025

Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 101408, China. Electronic address:

The biogeochemical processes of organic matter exhibit notable variability and unpredictability in marginal seas. In this study, the abiologically and biologically driving effects on particulate organic matter (POM) and dissolved organic matter (DOM) were investigated in the Yellow Sea and Bohai Sea of China, by introducing the cutting-edge network inference tool of deep learning. The concentration of particulate organic carbon (POC) was determined to characterize the status of POM, and the fractions and fluorescent properties of DOM were identified through 3D excitation-emission-matrix spectra (3D-EEM) combined parallel factor analysis (PARAFAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!