Equations to predict nitrogen outputs in manure, urine and faeces from beef cattle fed diets with contrasting crude protein concentration.

J Environ Manage

Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, New Agriculture Building, PO Box 237, Earley Gate, Reading, RG6 6EU, United Kingdom. Electronic address:

Published: October 2021

Accurately predicting nitrogen (N) outputs in manure, urine and faeces from beef cattle is crucial for the realistic assessment of the environmental footprint of beef production and the development of sustainable N mitigation strategies. This study aimed to develop and validate equations for N outputs in manure, urine and faeces for animals under diets with contrasting crude protein (CP) concentrations. Measurements from individual animals (n = 570), including bodyweight, feed intake and chemical composition, and N outputs were (i) analysed as a merged database and also (ii) split into three sub-sets, according to diet CP concentration (low CP, 84-143 g/kg dry matter, n = 190; medium CP, 144-162 g/kg dry matter, n = 190; high CP, 163-217 g/kg dry matter, n = 190). Prediction equations were developed and validated using residual maximum likelihood analysis and mean prediction error (MPE), respectively. In low CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.244, 0.594 and 0.263, respectively; diet CP-specific equations improved accuracy in certain occasions, by 4.9% and 18.3% for manure N output and faeces N output respectively, while a reduction by 5.7% in the prediction accuracy for urinary N output was noticed. In medium CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.227, 0.391 and 0.394, respectively; diet CP-specific equations improved accuracy by 13.2%, 41.2% and 16.8% respectively. In high CP diets the lowest MPE for N outputs in manure, urine and faeces was 0.120, 0.154 and 0.144, respectively; diet CP-specific equations improved accuracy in certain occasions by 5.8%, 9.1% and 6.3% respectively. This study demonstrated that for improved prediction accuracy of N outputs in manure, urine and faeces from beef cattle, the use of dietary CP concentration is essential while dietary starch, fat, and metabolisable energy concentrations can be used to further improve accuracy. In beef cattle fed low CP concentration diets, using diet CP-specific equations improves prediction accuracy when feed intake or dietary CP concentration are not known. However, in beef cattle fed medium or high CP concentration diets, using equations that have been developed from animals fed similar CP concentration diets, substantially improves the prediction accuracy of N outputs in manure, urine and faeces in most cases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.113074DOI Listing

Publication Analysis

Top Keywords

outputs manure
32
manure urine
32
urine faeces
32
beef cattle
20
diet cp-specific
16
cp-specific equations
16
prediction accuracy
16
faeces beef
12
cattle fed
12
dry matter
12

Similar Publications

Nitrate pollution in water bodies is a worldwide environmental problem, and identifying the sources of nitrate is of great significance to guarantee the sustainable use of water resources. A variety of water chemistry indicators and nitrate nitrogen and oxygen isotopes (N-NO and O-NO) were used to analyze the water chemistry characteristics of water bodies in Shiyan to identify the sources of nitrate in the water bodies and to calculate the contribution rate of nitrate from different pollution sources of the water bodies using the SIMMR model. The results showed that the hydrochemical types of surface water and groundwater in the study area were dominated by the HCO-Ca·Mg type, and the formation of nitrate in the water body was mainly affected by nitrification, with non-obvious denitrification.

View Article and Find Full Text PDF

The construction of "zero-free cities" is an effective plan to achieve the carbon peak plan, reduce pollution and carbon emissions, and promote a circular economy. Based on the WARM model and Emission factor method, the total carbon emission reduction of solid waste sources and disposal in each field during the implementation of the zero-free city policy in Chongqing (2017-2021) was calculated, and the total carbon emission reduction of solid waste in each field in 2025 was predicted by scenario. The results showed that: ① After the implementation of cleaner production and green manufacturing policies in Chongqing, the generation intensity of general industrial solid waste decreased to 0.

View Article and Find Full Text PDF

Ninety Holstein dairy cows (24 primiparous, 66 multiparous [mean parity 3.0]) were fed diets containing either 150, 160 or 170 g CP/kg DM from 8 - 180 DIM with all diets designed to supply at least 100% MP requirements. On d 181, half of the cows on each treatment changed to a diet containing 140 g CP/kg DM (supplying 100% MP requirements), with the remaining cows continuing to be offered their original treatment diets.

View Article and Find Full Text PDF

Nutrient budgeting for cropland is a crucial tool for assessing nutrient mining or excess application. We estimated the nutrient budget of nitrogen (N), phosphorus (P), and potassium (K) in cropland for South Asia during the last five decades (from 1970 to 2018) using equation-based empirical methods. Nutrient budget for the last five decades shows a negative balance of N (3.

View Article and Find Full Text PDF

Jivamrit as a Sustainable Approach: A Review of Natural Farming and Future Agriculture.

Recent Adv Food Nutr Agric

October 2024

School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat, India.

Article Synopsis
  • - The Green Revolution aims to increase food production in India but has negative impacts on health and agriculture; natural manures like cow dung can help mitigate these issues by enhancing soil quality and crop yield.
  • - Zero Budget Natural Farming (ZBNF) practices, particularly with Jivamrit, promote healthier soils and contain essential nutrients while fostering beneficial microbes that improve plant growth.
  • - While Jivamrit uses natural substances to boost sustainable agriculture, long-term reliance on it could upset the microbial balance in the soil, underlining the need for careful management of agricultural practices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!