Line defects in plasmatic hollow copper ball boost excellent photocatalytic reaction with pure water under ultra-low CO concentration.

J Colloid Interface Sci

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China. Electronic address:

Published: December 2021

By using a low CO concentration as a C1 source, the design of a plasmonic catalyst that can effectively photocatalytic CO reduction is of great significance for sustainable and ecological development. Herein, the space confinement effect and liquid environment of the molten salt result in uniform hollow structure, while the strong aggressive force furnished via using molten salt enhances the formation of line defects. This special structure can not only provide a large number of active sites but also greatly accelerate the transport of photoinduced charge carriers. The hollow copper ball with line defects (CCu) shows excellent photocatalytic activity with pure water (1028.57 μmol g), and it also shows good catalytic activity even under ultra-low CO content, which far exceeds the catalytic activity of most semiconductor-based catalysts. This work is designed to simultaneously construct line defect and hollow structure in plasmatic metal nanoparticles for efficient photocatalytic CO reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.06.127DOI Listing

Publication Analysis

Top Keywords

hollow copper
8
copper ball
8
excellent photocatalytic
8
pure water
8
photocatalytic reduction
8
molten salt
8
hollow structure
8
catalytic activity
8
defects plasmatic
4
hollow
4

Similar Publications

Harvesting low-velocity water flow energy stably over the long term is a significant challenge. Herein, a flexible rolling triboelectric nanogenerator with a bionic gill cover structure (GFR-TENG) to harvest steady low-velocity water flow energy is proposed. The dielectric material of the GFR-TENG is eight flexible hollow fluorinated ethylene propylene (FEP) pipes, which guarantees that rolling friction is formed between the dielectric material and copper electrode.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

Enhanced Photothermal/Immunotherapy under NIR Irradiation Based on Hollow Mesoporous Responsive Nanomotor.

Inorg Chem

December 2024

Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, School of Mechano-Electronic Engineering, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.

In this research, a hollow mesoporous responsive nanomotor was proposed for enhanced photothermal/immunotherapy under near infrared (NIR) irradiation. HA-HMCuS/AS as the nanomotor composed of hollow mesoporous copper sulfide (HMCuS) loaded with artesunate (AS) and hyaluronic acid (HA) was utilized to induce the polarization of tumor-associated macrophages. At the beginning, ResNet18 deep learning model was utilized to predict the Brunauer-Emmett-Teller (BET) surface area of HMCuS based on the morphology data set which was obtained from our conventional research.

View Article and Find Full Text PDF

A hollow cathode discharge with a copper nickel cathode (Cu50Ni50) was operated in an Ar/H/N gas mixture. Optical emission spectroscopy revealed the formation of NH radicals, which serve as precursors for NH formation. Ion mass spectrometry showed the formation of NH and NH ions indicating NH formation.

View Article and Find Full Text PDF

CaCO-encircled hollow CuS nanovehicles to suppress cervical cancer through enhanced calcium overload-triggered mitochondria damage.

Asian J Pharm Sci

December 2024

Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.

Cervical cancer stands is a formidable malignancy that poses a significant threat to women's health. Calcium overload, a minimally invasive tumor treatment, aims to accumulate an excessive concentration of Ca within mitochondria, triggering apoptosis. Copper sulfide (CuS) represents a photothermal mediator for tumor hyperthermia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!