Cellular evolution as the flow of energy.

Prog Biophys Mol Biol

Departments of Pediatrics, Obstetrics and Gynecology, Evolutionary Medicine Program, David Geffen School of Medicine, University of California, Los Angeles, United States. Electronic address:

Published: December 2021

In contrast to Darwinian evolution, which is founded on the material competition between organisms, cellular epigenetic evolution focuses on cell-cell communication of data from one stage of life to another-developmentally, phylogenetically, as injury-repair - ultimately governed by the First Principles of Physiology. By merging ontogeny and phylogeny, since both are based on cell-cell communication mediated by soluble growth factors and their receptors, evolution complies as one holistic, unified process. As such, the material aspects of the organism can be seen as 'means' instead of 'ends', begging the question as to just what the 'ends' of evolution are ? Once the superficial material aspect of lifeforms is eliminated, only the flow of energy is left, within and between generations. Contemporary biology and physics are at a critical phase, unable to reduce their problems to practice. A paradigm shift to evolution as energy flow is proposed as the solution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbiomolbio.2021.06.011DOI Listing

Publication Analysis

Top Keywords

flow energy
8
cell-cell communication
8
evolution
5
cellular evolution
4
evolution flow
4
energy contrast
4
contrast darwinian
4
darwinian evolution
4
evolution founded
4
founded material
4

Similar Publications

Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.

View Article and Find Full Text PDF

Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.

View Article and Find Full Text PDF

Aptamer-Antibody Birecognized Sandwich SERRS Biosensor in Accurate and Rapid Identification of Intraoperative Parathyroid Hormone.

Anal Chem

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, Cancer Center and Department of Breast and Thyroid Surgery, Department of Ultrasound, Xiang'an Hospital of Xiamen University, School of Medicine, Laboratory Animal Center Xiamen University, Xiamen University, Xiamen 361005, China.

With the increasing incidence of thyroid cancer worldwide and the increasing demand for surgery, the risk of parathyroid injury is also increasing, which will lead to postoperative hypoparathyroidism (HP) and hypocalcemia. In order to improve the quality of life of patients after surgery, there is an urgent need to develop a novel platform that can identify the parathyroid gland immediately during surgery. The parathyroid gland promotes the increase of blood calcium concentration by secreting parathyroid hormone (PTH).

View Article and Find Full Text PDF

Constructal Thermodynamics and its Semantic Ontology in Autopoetic, Digital, and Computational Architectural and Urban Space Open Systems.

Biosystems

January 2025

ICube Laboratory, UMR 7357, Department of Mechanics, Civil Engineering and Energetics Team - GCE, CNRS, University of Strasbourg, INSA Strasbourg, Department of Architecture, 24 Boulevard de la Victoire, 67084 Strasbourg Cedex, France; MAP-Aria Laboratory, UMR CNRS/MCC 3495, École Nationale Supérieure d'Architecture de Lyon, 3 rue Maurice Audin, BP 170, 69512 Vaulx-en-Velin Cedex, France. Electronic address:

This paper explores the intersections of constructal thermodynamics, and its semantic ontology within the context of autopoetic, digital and computational design in protocell inspired numerical architectural and urban narratives that are examined here as open systems. Constructal law is the thermodynamic theory based on the analysis of fluxes across the border of an open system. Protocells, as dynamic and adaptive open finite size systems, serve in this paper as a compelling metaphor and design model for responsive and sustainable manmade architectural and urban environments.

View Article and Find Full Text PDF

The impact of glidant addition on the loss-in-weight feeding of active pharmaceutical ingredients.

Int J Pharm

January 2025

Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium. Electronic address:

In recent years, continuous manufacturing (CM) has become increasingly popular in the pharmaceutical industry for the production of oral solid dosage (OSD) forms. Most of the newly developed active pharmaceutical ingredients (APIs) nowadays are extremely cohesive and sticky with a mean particle size particle of <100μm, a wide particle size distribution (PSD) and a high tendency to agglomerate, making them difficult to accurately dose using loss-in-weight equipment during CM. In this research paper, the effect of various glidants on the volumetric and gravimetric feeding of several APIs was assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!