Hitchhiking to brain tumours: stem cell delivery of oncolytic viruses.

Lancet Oncol

Department of Pediatrics, University Clinic of Navarra, Pamplona, Spain; Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain; Institute for the Medical Research of Navarra, Pamplona, Spain. Electronic address:

Published: August 2021

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1470-2045(21)00296-5DOI Listing

Publication Analysis

Top Keywords

hitchhiking brain
4
brain tumours
4
tumours stem
4
stem cell
4
cell delivery
4
delivery oncolytic
4
oncolytic viruses
4
hitchhiking
1
tumours
1
stem
1

Similar Publications

The neurological implications of micro- and nanoplastic exposure have recently come under scrutiny due to the environmental prevalence of these synthetic materials. Parkinson's disease (PD) is a major neurological disorder clinically characterized by intracellular Lewy-body inclusions and dopaminergic neuronal death. These pathological hallmarks of PD, according to Braak's hypothesis, are mediated by the afferent propagation of α synuclein (αS) via the enteric nervous system, or the so-called gut-brain axis.

View Article and Find Full Text PDF

Regulating astrocyte phenotype by Lcn2 inhibition toward ischemic stroke therapy.

Biomaterials

January 2025

Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China.

Astrocytes can be reacted to "reactive astrocytes" after ischemia-reperfusion injury, in which A1 phenotype causes neuronal and oligodendrocyte death, whereas the A2 phenotype exerts neuroprotective effects, thus regulating reactive astrocyte to A2 type is a potential target for stroke therapy. Lcn2 level is highly associated with the phenotypic polarization of astrocytes. We found that silencing the Lcn2 gene by adeno-associated virus (AAV)-Lcn2 shRNA adenovirus resulted in a dramatic decrease in A1-type astrocytes and increase in A2 astrocytes in MCAO mice.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) has emerged as a valuable liquid biopsy source for glioma biomarker discovery and validation. CSF produced within the ventricles circulates through the subarachnoid space, where the composition of glioma-derived analytes is influenced by the proximity and anatomical location of sampling relative to tumor, in addition to underlying tumor biology. The substantial gradients observed between lumbar and intracranial CSF compartments for tumor-derived analytes underscore the importance of sampling site selection.

View Article and Find Full Text PDF

NET formation-mediated in situ protein delivery to the inflamed central nervous system.

Nat Commun

December 2024

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.

Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.

View Article and Find Full Text PDF

Classical Monocytes Shuttling for Precise Delivery of Nanotherapeutics to Glioblastoma.

Adv Healthc Mater

November 2024

Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.

Glioblastoma (GBM) is the most aggressive brain tumor for which current therapies have limited efficacy. Immunosuppression and difficulties in accessing tumors with therapeutic agents are major obstacles for GBM treatments. Classical monocytes (CMs) possess the strongest infiltration among myeloid cells recruited into tumors during tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!