Purpose: The use of three-dimensional (3D) printing to develop custom phantoms for dosimetric studies in radiotherapy is increasing. The process allows production of phantoms designed to evaluated specific geometries, patients, or patient groups with a defining feature. The ability to print bone-equivalent phantoms has, however, proved challenging. The purpose of this work was to 3D print a series of three similar spine phantoms containing no surgical implants, implants made of titanium, and implants made of carbon fiber, for future dosimetric and imaging studies. Phantoms were evaluated for (a) tissue and bone equivalence, (b) geometric accuracy compared to design, and (c) similarity to one another.
Methods: Sample blocks of PLA, HIPS, and StoneFil PLA-concrete with different infill densities were printed to evaluate tissue and bone equivalence. The samples were used to develop CT to physical (PD) and effective relative electron density (RED ) conversion curves and define the settings for printing the phantoms. CT scans of the printed phantoms were obtained to assess the geometry and densities achieved. Mean distance to agreement (MDA) and DICE coefficient (DSC) values were calculated between contours defining the different materials, obtained from design and like phantom modules. HU values were used to determine PD and RED and subsequently evaluate tissue and bone equivalence.
Results: Sample objects showed linear relationships between HU and both PD and RED for both PLA and StoneFil. The PD and RED of the objects calculated using clinical CT conversion curves were not accurate and custom conversion curves were required. PLA printed with 90% infill density was found to have a PD of 1.11 ± 0.03 g.cm and RED of 1.04 ± 0.02 and selected for tissue- equivalent phantom elements. StoneFil printed with 100% infill density showed a PD of 1.35 ± 0.03 g.cm and RED of 1.24 ± 0.04 and was selected for bone-equivalent elements. Upon evaluation of the final phantoms, the PLA elements displayed PD in the range of 1.10 ± 0.03 g.cm -1.13 ± 0.03 g.cm and RED in the range of 1.02 ± 0.03-1.06 ± 0.03. The StoneFil elements showed PD in the range of 1.43 ± 0.04 g.cm -1.46 ± 0.04 g.cm and RED in the range of 1.31 ± 0.04-1.33 ± 0.04. The PLA phantom elements were shown to have MDA of ≤1.00 mm and DSC of ≥0.95 compared to design, and ≤0.48 mm and ≥0.91 compared like modules. The StoneFil elements displayed MDA values of ≤0.44 mm and DSC of ≥0.98 compared to design and ≤0.43 mm and ≥0.92 compared like modules.
Conclusions: Phantoms which were radiologically equivalent to tissue and bone were produced with a high level of similarity to design and even higher level of similarity of one another. When used in conjunction with the derived CT to PD or RED conversion curves they are suitable for evaluating the effects of spinal surgical implants of varying material of construction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.15070 | DOI Listing |
Tissue Eng Part A
January 2025
C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.
Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.
View Article and Find Full Text PDFElife
January 2025
Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom.
A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8086, St. Louis, MO, 63110, USA.
Purpose Of Review: This review aims to explore the role of immune memory and trained immunity, focusing on how innate immune cells like monocytes, macrophages, and natural killer cells undergo long-term epigenetic and metabolic rewiring. Specifically, it examines the mechanisms by which trained immunity, often triggered by infection or vaccination, could impact cardiac processes and contribute to both protective and pathological responses within the cardiovascular system.
Recent Findings: Recent research demonstrates that vaccination and infection not only activate immune responses in circulating monocytes and tissue macrophages but also affect immune progenitor cells within the bone marrow environment, conferring lasting protection against heterologous infections.
Tissue Eng Regen Med
January 2025
Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
Background: Regulatory T cells (Tregs) are essential for maintaining immune homeostasis and facilitating tissue regeneration by fostering an environment conducive to tissue repair. However, in damaged tissues, excessive inflammatory responses can overwhelm the immunomodulatory capacity of Tregs, compromising their functionality and potentially hindering effective regeneration. Mesenchymal stem cells (MSCs) play a key role in enhancing Treg function.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Periodontology, Semmelweis University, Budapest, Hungary.
Objectives: To investigate the performance of a deep learning (DL) model for segmenting cone-beam computed tomography (CBCT) scans taken before and after mandibular horizontal guided bone regeneration (GBR) to evaluate hard tissue changes.
Materials And Methods: The proposed SegResNet-based DL model was trained on 70 CBCT scans. It was tested on 10 pairs of pre- and post-operative CBCT scans of patients who underwent mandibular horizontal GBR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!