Rapid self-assembly of γPNA nanofibers at constant temperature.

Biopolymers

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

Published: November 2021

Peptide nucleic acids (PNAs) have primarily been used to achieve therapeutic gene modulation through antisense strategies since their design in the 1990s. However, the application of PNAs as a functional nanomaterial has been more recent. We recently reported that γ-modified peptide nucleic acids (γPNAs) could be used to enable formation of complex, self-assembling nanofibers in select polar aprotic organic solvent mixtures. Here we demonstrate that distinct γPNA strands, each with a high density of γ-modifications can form complex nanostructures at constant temperatures within 30 minutes. Additionally, we demonstrate DNA-assisted isothermal growth of γPNA nanofibers, thereby overcoming a key hurdle for future scale-up of applications related to nanofiber growth and micropatterning.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.23463DOI Listing

Publication Analysis

Top Keywords

γpna nanofibers
8
peptide nucleic
8
nucleic acids
8
rapid self-assembly
4
self-assembly γpna
4
nanofibers constant
4
constant temperature
4
temperature peptide
4
acids pnas
4
pnas achieve
4

Similar Publications

Integrating electrospun aligned fiber scaffolds with bovine serum albumin-basic fibroblast growth factor nanoparticles to promote tendon regeneration.

J Nanobiotechnology

December 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.

Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.

Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.

View Article and Find Full Text PDF

This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.

View Article and Find Full Text PDF

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

This study aimed to develop eco-friendly multifunctional nanocellulose (NC) hybrid films with tailored properties for versatile applications including packaging and photovoltaics. Hybrid films composed by cellulose nanocrystals (CNC) and carboxymethylated cellulose nanofibrils (CNF) were produced at various mass ratio (CNC - 100:0 to 0:100). Montmorillonite clay (MTM) was incorporated (50 % by mass) into the CNC:CNF films.

View Article and Find Full Text PDF

Robust and ultra-thin nanocellulose/MXene composite film and its performance in efficient electricity-generation and sensing.

Int J Biol Macromol

December 2024

Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:

The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.

View Article and Find Full Text PDF

A review on polysaccharide-based delivery systems for edible bioactives: pH responsive, controlled release, and emerging applications.

Int J Biol Macromol

December 2024

College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:

pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!