Food proteins are sources for ACE-I inhibitory peptides that can be extracted by enzymatic hydrolysis exhibiting anti-hypertensive activity. However, these peptides are prone to further degradation by gastrointestinal enzymes during oral consumption. Bio-activity of these peptides is dependent on the resultant peptide post gastrointestinal digestion. To exhibit the bio-activity, they need to be absorbed in intact form. Although studies suggest di and tri-peptides show better ACE-I inhibitory activity, few peptides show altered IC values under simulated gastrointestinal digestion. Moreover, ACE-I inhibitory peptides with low IC values have not shown effective anti-hypertensive activity in spontaneously hypertensive rats when administered orally. Few ACE-I inhibitory peptides have reported effective reduction in systolic blood-pressure when administered through intravenously. During oral consumption of such peptides, the actual peptide sequence responsible for reducing blood-pressure is a result of breakdown in gastrointestinal tract. The fate of targeted peptides during digestion depends on amino acid sequence of the protein containing the specific site for cleavage where the action of digestive enzymes takes place. Therefore, this review attempts to explain the factors that affect the anti-hypertensive activity of ACE-I inhibitory peptides during oral consumption. It also highlights subsequent absorption of ACE-I inhibitory peptides after gastrointestinal digestion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408398.2021.1938508 | DOI Listing |
Int J Mol Sci
November 2024
Clinical and Research Laboratory (LACIUS, C.N., CONAHCYT National Laboratory, LANIBIOC), Deparment of Chemical, Biological, and Agricultural Sciences (DC-QB), Faculty of Biological and Health Sciences, University of Sonora, Navojoa 85880, Sonora, Mexico.
Lupin ( L.) proteins are potential sources of bioactive peptides (LBPs) that can inhibit dipeptidyl peptidase IV (DPP-IV) and angiotensin I-converting enzyme (ACE-I) activity. However, the capacity of different enzymes to release LBPs, the pharmacokinetic and bioactivities of the peptides released, and their binding affinities with the active sites of DPP-IV and ECA-I are topics scarcely addressed.
View Article and Find Full Text PDFJ Food Drug Anal
September 2024
Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
Food Res Int
December 2024
Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Paterna, Valencia, Spain. Electronic address:
Curr Issues Mol Biol
October 2024
Faculty of Pharmacy and Nutrition, Universidad Católica de Murcia-UCAM, Campus de los Jerónimos, 30107 Murcia, Spain.
In recent years, several studies have shown the antioxidant and antihypertensive potential of bioactive peptides. Thus, bioactive peptides are likely to be a valuable substance for the development of functional foods. There are a wide variety of sources of these peptides, including several cereals.
View Article and Find Full Text PDFFood Chem
February 2025
School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico. Electronic address:
One of the causes of hypertension is the activity of angiotensin-I converting enzyme (ACEI), making its inhibition a crucial strategy for controlling the disease. Protein hydrolysates are a known source of bioactive peptides that contribute to ACE-I inhibition. This study aims to evaluate the ACE-I inhibitory activity of amaranth seed hydrolysates after fermentation with Enterococcus faecium-LR9 and to compare it with Leuconostoc mesenteroides-18C6 and enzymatic hydrolysis (Alcalase®).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!