The analysis of complex physical systems hinges on the ability to extract the relevant degrees of freedom from among the many others. Though much hope is placed in machine learning, it also brings challenges, chief of which is interpretability. It is often unclear what relation, if any, the architecture- and training-dependent learned "relevant" features bear to standard objects of physical theory. Here we report on theoretical results which may help to systematically address this issue: we establish equivalence between the field-theoretic relevance of the renormalization group, and an information-theoretic notion of relevance we define using the information bottleneck (IB) formalism of compression theory. We show analytically that for statistical physical systems described by a field theory the relevant degrees of freedom found using IB compression indeed correspond to operators with the lowest scaling dimensions. We confirm our field theoretic predictions numerically. We study dependence of the IB solutions on the physical symmetries of the data. Our findings provide a dictionary connecting two distinct theoretical toolboxes, and an example of constructively incorporating physical interpretability in applications of deep learning in physics.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.126.240601DOI Listing

Publication Analysis

Top Keywords

relevance renormalization
8
renormalization group
8
physical systems
8
relevant degrees
8
degrees freedom
8
physical
5
theory
4
group theory
4
theory analysis
4
analysis complex
4

Similar Publications

Phenomenological rules that govern the collective behavior of complex physical systems are powerful tools because they can make concrete predictions about their universality class based on generic considerations, such as symmetries, conservation laws, and dimensionality. While in most cases such considerations are manifestly ingrained in the constituents, novel phenomenology can emerge when composite units associated with emergent symmetries dominate the behavior of the system. We study a generic class of active matter systems with nonreciprocal interactions and demonstrate the existence of true long-range polar order in two dimensions and above, both at the linear level and by including all relevant nonlinearities in the Renormalization Group sense.

View Article and Find Full Text PDF

The physics of complex systems stands to greatly benefit from the qualitative changes in data availability and advances in data-driven computational methods. Many of these systems can be represented by interacting degrees of freedom on inhomogeneous graphs. However, the lack of translational invariance presents a fundamental challenge to theoretical tools, such as the renormalization group, which were so successful in characterizing the universal physical behaviour in critical phenomena.

View Article and Find Full Text PDF

Phenomenology of Many-Body Localization in Bond-Disordered Spin Chains.

Phys Rev Lett

November 2024

Instytut Fizyki Teoretycznej, Uniwersytet Jagielloński, Łojasiewicza 11, PL-30-348 Kraków, Poland.

Many-body localization (MBL) hinders the thermalization of quantum many-body systems in the presence of strong disorder. In this Letter, we study the MBL regime in bond-disordered spin-1/2 XXZ spin chain, finding the multimodal distribution of entanglement entropy in eigenstates, sub-Poissonian level statistics, and revealing a relation between operators and initial states required for examining the breakdown of thermalization in the time evolution of the system. We employ a real space renormalization group scheme to identify these phenomenological features of the MBL regime that extend beyond the standard picture of local integrals of motion relevant for systems with disorder coupled to on-site operators.

View Article and Find Full Text PDF

Low-Energy Optical Sum Rule in Moiré Graphene.

Phys Rev Lett

November 2024

Department of Physics, Cornell University, Ithaca, New York 14853, USA.

Few layers of graphene at small twist angles have emerged as a fascinating platform for studying the problem of strong interactions in regimes with a nearly quenched single-particle kinetic energy and nontrivial band topology. Starting from the strong-coupling limit of twisted bilayer graphene with a vanishing single-electron bandwidth and interlayer tunneling between the same sublattice sites, we present an exact analytical theory of the Coulomb interaction-induced low-energy optical spectral weight at all integer fillings. In this limit, while the interaction-induced single-particle dispersion is finite, the optical spectral weight vanishes identically at integer fillings.

View Article and Find Full Text PDF

Background: Left bundle branch pacing (LBBP) provides stable pacing parameters and has been suggested as an alternative for right ventricular pacing and cardiac resynchronization therapy.

Objectives: The aim of the study was to assess the incidence and etiology of new-onset left ventricular dysfunction (NOLVD) following LBBP in patients with baseline normal left ventricular (LV) function and cardiomyopathy patients with normalized LV function.

Methods: Patients undergoing successful LBBP for symptomatic bradyarrhythmia or as an alternative to cardiac resynchronization therapy were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!