Breast cancer is one of the most common malignant tumors in women. The existence of multiple breast cancer subtypes often leads to chemotherapy failure or the development of drug resistance. In recent years, photodynamic therapy has been proven to enhance the sensitivity of tumors to chemotherapeutic drugs. Porphyrin-based metal-organic framework (MOF) materials could simultaneously be used as carriers for chemotherapy and photosensitizers in photodynamic therapy. In this paper, doxorubicin hydrochloride (DOX) was loaded in porphyrin MOFs, and the mechanism of the synergistic effect of the DOX carriers and photodynamic therapy on breast cancer was investigated. In vitro and in vivo experiments have shown that MOFs could prolong the residence time of DOX in tumor tissues and promote the endocytosis of DOX by tumor cells. In addition, adjuvant treatment with photodynamic therapy can promote breast cancer tumors to resensitize to DOX and synergistically enhance the chemotherapy effect of DOX. Therefore, this study can provide effective development ideas for reversing drug resistance during breast cancer chemotherapy and improving the therapeutic effect of chemotherapy on breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.1c00249 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!