Among medical gases, including gases used therapeutically, this review discusses the comparative physiological activity of three gases - ozone (O), xenon (Xe) and molecular hydrogen (H), which together form representatives of three types of substances - typical oxidizing, inert, and typical reducing agents. Upon analysis of published and proprietary data, we concluded that these three medical gases can manipulate the neuroendocrine system, by modulating the production or release of hormones via the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-gonadal axes, or the gastrointestinal pathway. With repeated administration of the gases over time, these modulations become a predictable consequence of conditioned homeostatic reflexes, resulting in regulation of physiological activity. For example, the regular activation of the unconditioned defense reflex in response to repeated intoxication by ozone leads to the formation of an anticipatory stable conditioned response, which counteracts the toxic action of O. The concept of a Pavlovian conditioned reflex (or hormoligosis) is a brief metaphor for the understanding the therapeutic effect of systemic ozone therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8374457 | PMC |
http://dx.doi.org/10.4103/2045-9912.318863 | DOI Listing |
Int J Biol Sci
January 2025
Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
Cold atmospheric plasma (CAP) has been proposed as an emerging onco-therapeutics that can specifically kill cancer cells without harming healthy cells. Here we explore its potency in triggering ferroptosis in transformed cells using triple negative breast cancer as the disease model. Through the whole transcriptome sequencing, mass spectrometry analysis, point mutation, and a series of and molecular assays, we identified two signaling axes centered at EGFR(Y1068), i.
View Article and Find Full Text PDFZhonghua Wei Zhong Bing Ji Jiu Yi Xue
December 2024
Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen 518071, Guangdong, China.
Prehospital emergency care is the primary stage in the treatment of critically ill patients, where efficient and accurate monitoring methods are crucial for patient survival and prognosis. End-tidal carbon dioxide (EtCO) monitoring is a real-time, non-invasive method that can sensitively capture the status of respiratory, circulatory, and metabolic functions, particularly in the urgent and complex pre-hospital environment, a immediate detection and non-invasive method, can sensitively capture the respiratory, circulatory, and metabolic status of patients. It provides valuable guidance for rapid decision-making and precise interventions.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Department of Production and Characterization of Novel Foods, Institute of Food Science Research, CIAL (UAM-CSIC), 28049 Madrid, Spain. Electronic address:
Coffee pulp (CP) is the by-product of coffee processing that urgently needs to be revalorized using sustainable technologies. This work applied a design of experiment (DoE) for modeling the extraction of bioactive compounds from CP using supercritical carbon dioxide (sc-CO) with ethanol as a co-solvent under variable conditions (temperature, pressure, and ethanol percentage). Considering extraction efficiency (per unit of CP) and extraction selectivity (per unit of extract), results showed that ethanol percentage significantly enhanced the efficiency of total phenolic content, as well as the selectivity of chlorogenic acid and protocatechuic acid (p < 0.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:
Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.
Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!