Glycans play an important role in many biochemical processes, including protein function and cell signaling. Mass spectrometry (MS) provides the potential for high-throughput, high-sensitivity analysis of glycans but relies heavily on computational interpretation of experimental results. Open-source, stand-alone algorithms for de novo glycan MS analysis are few. One such algorithm, Sweet-SEQer, is available in Python. Glycan analysis of mass spectra can easily involve high volumes of data where Python's performance in time and memory is a noticeable bottleneck. This manuscript describes C-SEQer, a new implementation of the Sweet-SEQer algorithm in C++, which produces the same output as the original algorithm in approximately 15-fold less time with substantially less memory usage. The implementation is freely available with an MIT license.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.1c00379 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!