Enhanced Photovoltaic Performance of BiSCl Solar Cells Through Nanorod Array.

ChemSusChem

Department of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, 761-0396, Japan.

Published: August 2021

AI Article Synopsis

Article Abstract

BiSCl single-crystalline nanofibers were synthesized by a facile one-pot solvothermal approach for the first time. BiSCl possesses a double chain type structure and grows readily along the c-axis, resulting the fibrous morphology. UV/Vis absorption spectroscopy revealed that BiSCl nanofibers exhibit a strong light absorption in a wavelength range from UV to visible light, corresponding to a bandgap of 1.96 eV. Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that BiSCl is a direct n-type semiconductor with valence band maximum and conduction band minimum located at 6.04 and 4.08 eV below the vacuum level, respectively. To investigate the photovoltaic performance, the homogeneous thin film of BiSCl-nanorod array was fabricated on a TiO porous film by a modified solvothermal process, where the nanorod array is oriented vertically to the surface of the TiO porous film. A proper band alignment of BiSCl-based solar cells with an architecture of fluorine-doped tin oxide (FTO)/TiO /BiSCl/(I /I )/Pt gave a PCE of 1.36 % and a relatively large short-circuit photocurrent density of 9.87 mA cm for the first time. The preliminary photovoltaic study result revealed a potential possibility of BiSCl-nanorod array as a light absorber for solar cells that can be fabricated by the low-cost solution process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202101161DOI Listing

Publication Analysis

Top Keywords

solar cells
12
photovoltaic performance
8
nanorod array
8
revealed biscl
8
biscl-nanorod array
8
tio porous
8
porous film
8
biscl
5
enhanced photovoltaic
4
performance biscl
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin.

Cell Mol Biol Lett

January 2025

Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.

The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting.

View Article and Find Full Text PDF

Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation.

Nat Mater

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.

Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.

View Article and Find Full Text PDF

Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.

View Article and Find Full Text PDF

High-Efficiency (21.4%) Carbon Perovskite Solar Cells via Cathode Interface Engineering by using CuPc Hole-Transporting Layers.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Carbon perovskite solar cells (C-PSCs) represent a promising photovoltaic technology that addresses the long-term operating stability needed to compete with commercial Si solar cells. However, the poor interface contacts between the carbon electrode and the perovskite result in a gap between C-PSC's performances and state-of-the-art PSCs based on metallic back electrodes. In this work, Cu (II) phthalocyanine (CuPc) was rediscovered as an effective hole-transporting material (HTM) to be coupled with carbon electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!