The photon beamline vacuum system of the European X-ray Free-Electron Laser Facility (European XFEL) is described. The ultra-large, in total more than 3 km-long, fan-like vacuum system, consisting of three photon beamlines is an essential part of the photon beam transport. It is located between the accelerator vacuum system and the scientific instruments. The main focus of the design was on the efficiency, reliability and robustness of the entire system to ensure the retention of beam properties and the operation of the X-ray optics and X-ray photon diagnostics components. Installation started in late 2014, the first of the three beamline vacuum systems was commissioned in spring 2017, and the last one was operational in mid-2018. The present state and experience from the first years of operation are outlined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284404 | PMC |
http://dx.doi.org/10.1107/S1600577521005154 | DOI Listing |
Sci Data
January 2025
IBM Research, Hursley, SO21 2JN, UK.
A significant challenge in computational chemistry is developing approximations that accelerate ab initio methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Distinguishing whether a system supports alternate low-energy (locally stable) states-stable (true vacuum) versus metastable (false vacuum)-by direct observation can be difficult when the lifetime of the state is very long but otherwise unknown. Here we demonstrate, in a tractable model system, that there are physical phenomena on much shorter timescales that can diagnose the difference. Specifically, we study the time evolution of the magnetization following a quench in the tilted quantum Ising model, and show that its magnitude spectrum is an effective diagnostic.
View Article and Find Full Text PDFInt J Pharm
December 2024
Sciences Center of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil. Electronic address:
This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, Indian Institute of Technology Delhi, DEPRTMENT OF PHYSICS, IIT DELHI, HAUZ KHAS, New Delhi, Delhi, 110016, INDIA.
Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.
View Article and Find Full Text PDFSmall
December 2024
Songshan Lake Materials Laboratory (SLAB), Dongguan, 523808, P. R. China.
Aqueous zinc-ion batteries (AZIBs) stand out among many energy storage systems due to their many merits, and it's expected to become an alternative to the prevailing alkali metal ion batteries. Nevertheless, the cumbersome manufacturing process and the high cost of conventional separators make them unfavorable for large-scale applications. Herein, inspired by the unique nature of cellulose and ZrO, a Janus cellulose fiber (CF)/polyvinyl alcohol (PVA)/ZrO separator is prepared via the vacuum filtration method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!