Generally, electrocatalytic hydrogen evolution reaction (HER) by water splitting is a pH-dependent reaction, which limits the widespread harvesting of hydrogen energy. Herein, we present a simple way for chemical bonding of MoS (002) planes and α-MoC {111} planes to form in-plane heterostructures capable of efficient pH-universal HER. Due to the lattice strain from mismatched lattice parameters between α-MoC and MoS, this catalyst changes the electronic configuration of the MoS and thus acquires the favorable proton adsorption and desorption activity, suggested by the platinum (Pt)-like free Gibbs energy. Consequently, only a low 78 mV overpotential is needed to achieve the current density of 10 mA cm in acidic solution along with a favorable Tafel kinetic process with a Tafel slope of 38.7 mV dec. Owing to the synergistic interaction between MoS (002) planes and α-MoC {111} planes with strong water dissociation activities, this catalyst also exhibits high HER performances beyond that of Pt in neutral and alkaline. This work proves the advances of in-plane heterostructures and illustrates the production of low-cost but highly efficient pH-universal HER catalytic materials, promising for future sustainable hydrogen energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c01024 | DOI Listing |
Nat Commun
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
Despite extensive studies on magnetic proximity effects, the fundamental excitonic properties of the 2D semiconductor-magnet heterostructures remain elusive. Here, the presence of localized excitons in MoSe/CrSBr heterostructures is unveiled, represented by a new photoluminescence emission feature, X. Our findings reveal that X originates from excitons confined by intrinsic defects in the CrSBr layer.
View Article and Find Full Text PDFSci Adv
December 2024
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO/LaFeO superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe (3d). Here, we synthesized a series of epitaxial LaNiO/LaFeO superlattices and demonstrated partial (up to ~0.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, California 94305, United States.
Heterostructures composed of graphene and molybdenum trioxide (MoO) can support in-plane hybrid polaritons in the infrared. The isofrequency contour for these subwavelength polaritons can exhibit a quasi-flat region when the topological transition occurs as the doping level of graphene is tuned. Such a topological transition can be useful for optical sensing and imaging at nanoscale.
View Article and Find Full Text PDFNano Lett
January 2025
Université de Toulouse, INSA-CNRS-UPS, LPCNO, 135 Av. Rangueil, 31077 Toulouse, France.
When two BN layers are stacked in parallel in an AB or BA arrangement, a spontaneous out-of-plane electric polarization arises due to charge transfer in the out-of-plane B-N bonds. The ferroelectric switching from AB to BA (or BA to AB) can be achieved with a relatively small out-of-plane electric field through the in-plane sliding of one atomic layer over the other. However, the optical detection of such ferroelectric switching in hBN has not yet been demonstrated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!