All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction.

ACS Nano

Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.

Published: July 2021

Generally, electrocatalytic hydrogen evolution reaction (HER) by water splitting is a pH-dependent reaction, which limits the widespread harvesting of hydrogen energy. Herein, we present a simple way for chemical bonding of MoS (002) planes and α-MoC {111} planes to form in-plane heterostructures capable of efficient pH-universal HER. Due to the lattice strain from mismatched lattice parameters between α-MoC and MoS, this catalyst changes the electronic configuration of the MoS and thus acquires the favorable proton adsorption and desorption activity, suggested by the platinum (Pt)-like free Gibbs energy. Consequently, only a low 78 mV overpotential is needed to achieve the current density of 10 mA cm in acidic solution along with a favorable Tafel kinetic process with a Tafel slope of 38.7 mV dec. Owing to the synergistic interaction between MoS (002) planes and α-MoC {111} planes with strong water dissociation activities, this catalyst also exhibits high HER performances beyond that of Pt in neutral and alkaline. This work proves the advances of in-plane heterostructures and illustrates the production of low-cost but highly efficient pH-universal HER catalytic materials, promising for future sustainable hydrogen energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c01024DOI Listing

Publication Analysis

Top Keywords

in-plane heterostructures
12
hydrogen evolution
8
evolution reaction
8
hydrogen energy
8
mos 002
8
002 planes
8
planes α-moc
8
α-moc {111}
8
{111} planes
8
efficient ph-universal
8

Similar Publications

Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.

View Article and Find Full Text PDF

Intrinsic Localized Excitons in MoSe/CrSBr Heterostructure.

Adv Mater

December 2024

State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China.

Despite extensive studies on magnetic proximity effects, the fundamental excitonic properties of the 2D semiconductor-magnet heterostructures remain elusive. Here, the presence of localized excitons in MoSe/CrSBr heterostructures is unveiled, represented by a new photoluminescence emission feature, X. Our findings reveal that X originates from excitons confined by intrinsic defects in the CrSBr layer.

View Article and Find Full Text PDF

Interfacial charge transfer and its impact on transport properties of LaNiO/LaFeO superlattices.

Sci Adv

December 2024

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.

Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO/LaFeO superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe (3d). Here, we synthesized a series of epitaxial LaNiO/LaFeO superlattices and demonstrated partial (up to ~0.

View Article and Find Full Text PDF

Enhanced Free-Electron-Photon Interactions at the Topological Transition in van der Waals Heterostructures.

Nano Lett

January 2025

Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, California 94305, United States.

Heterostructures composed of graphene and molybdenum trioxide (MoO) can support in-plane hybrid polaritons in the infrared. The isofrequency contour for these subwavelength polaritons can exhibit a quasi-flat region when the topological transition occurs as the doping level of graphene is tuned. Such a topological transition can be useful for optical sensing and imaging at nanoscale.

View Article and Find Full Text PDF

When two BN layers are stacked in parallel in an AB or BA arrangement, a spontaneous out-of-plane electric polarization arises due to charge transfer in the out-of-plane B-N bonds. The ferroelectric switching from AB to BA (or BA to AB) can be achieved with a relatively small out-of-plane electric field through the in-plane sliding of one atomic layer over the other. However, the optical detection of such ferroelectric switching in hBN has not yet been demonstrated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!