Epikarst is the core area of karst critical zone, with important hydrologic regulation and storage function. However, the effects of karst development degree on hydrologic characteristics of epikasrt is still unclear. We used geophysical exploration and hydrogeological techniques, combined with the dynamic monitoring of moisture and water levels, to quantify the karst development degrees and their hydrologic characteristics on slope lands. We analyzed the responses of soil-epikarst systems to rainfall. Results showed that geophysical exploration technology could be well applied to the detection of surface-subsurface structures in the karst areas. The average thickness of soil and surface karst zone on the slope was less than 0.63 m and 2.60 m, respectively. The slopes of strong-karstification characterized by high apparent resistivity, well-developed joint fractures, and strong permeability (0.73 m·d). Such a result indicated that epikarst could regulate precipitation. The responses of soil moisture had a larger rainfall threshold (>20.50 mm·d) and the water level was determined by rainfall amount. In contrast, the slope with weak-karstification had low apparent resistivity and weak permeability (0.07 m·d). Moisture and water level were sensitive to rainfall. Karst channels were developed locally at 240-300 cm with a permeability coefficient of up to 432 mm·d. Obvious preferential flow was observed in extreme rainfall events on this slope, which could induce flood disaster in the adjacent depression. Our results would provide scientific basis for further research on water resources regulation, management, and eco-hydrology in karst areas of southwest China.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202106.013 | DOI Listing |
J Environ Manage
December 2024
School of Geoscience and Technology, Southwest Petroleum University, Chengdu, 610500, China. Electronic address:
Karstification can reduce the CO concentration in the atmosphere/soil. Accurate estimation of karst carbon sinks is crucial for the study of global climate change. In this study, the Lijiang River Basin was taken as the research area.
View Article and Find Full Text PDFSci Rep
December 2024
Mining College, Guizhou University, Guiyang, 550025, China.
Coal gangue (CG) is an industrial solid waste produced by coal mining and separation that is considered to have a significant effect on the soil or water environment when exposed to the air, exacerbating ecological pollution. The comprehensive utilization of CG has always been a difficult problem due to the complex mineralogical characteristics. Producing concrete aggregates with CG is an effective strategy for utilising CG resources synthetically.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China.
Returning raw straw to the soil can significantly elevate soil methylmercury (MeHg) and crop mercury (Hg) levels, underscoring the need to investigate safer approaches to straw utilization in mercury-contaminated regions. In this study, rice straw underwent anaerobic fermentation with the addition of sulfate, and the resulting fermentation products were utilized in a pot experiment involving water spinach to assess the impact of anaerobically fermented straw return on soil Hg methylation and its bioaccumulation. Findings revealed that the addition of sulfate during straw fermentation markedly increased the fermentation degree of the products, and sulfate was converted into organic sulfur-containing ligands that can functionalize the fermentation residuals.
View Article and Find Full Text PDFPeerJ
December 2024
College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China.
In this study, experiments were conducted on soil samples collected from depths of 0-15 cm, 15-30 cm, and 30-50 cm at the National Long-term Scientific Research Base for the Comprehensive Management of Rocky Desertification in the Wuling Mountains. The aim was to determine the physicochemical indexes and explore the nature and spatial heterogeneity of the soil of the planted mixed forests within the rocky desertification area of the Wuling Mountain. Various analytical methods were employed, including descriptive statistical analysis, correlation analysis, analysis of variance, principal component analysis, spatial interpolation analysis, and kriging interpolation, to fit the optimal model of the semi-variance function of soil physicochemical properties and analyze the model's parameters.
View Article and Find Full Text PDFInvest Radiol
October 2024
From the Research and Innovation Department, Guerbet, Roissy, France (I.M., M.-C.D.G., J.-F.M., A.D., Y.B., N.D., I.S., G.B., C.M., C.F., O.R., S.C.); General, Organic, and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.H., S.L.); and Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.K., T.J.M., U.K.).
Objectives: Gadopiclenol is a q = 2 pyclen gadolinium-based contrast agent (GBCA) recently approved by the Food and Drug Administration, European Medicines Agency, and other European countries. The aim of this report is to demonstrate its stability in multiple stressed in vitro conditions and in vivo, in rat kidney, while maintaining its higher relaxivity compared with conventional GBCAs on the market.
Materials And Methods: Both gadopiclenol and its chemical precursor Pi828-Gd were characterized and compared with q = 1 gadolinium (Gd) complexes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!