A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of clinical trials to assess diabetes treatment: Minimum duration of continuous glucose monitoring data to estimate time-in-ranges with the desired precision. | LitMetric

Aim: To compute the uncertainty of time-in-ranges, such as time in range (TIR), time in tight range (TITR), time below range (TBR) and time above range (TAR), to evaluate glucose control and to determine the minimum duration of a trial to achieve the desired precision.

Materials And Methods: Four formulas for the aforementioned time-in-ranges were obtained by estimating the equation's parameters on a training set extracted from study A (226 subjects, ~180 days, 5-minute Dexcom G4 Platinum sensor). The formulas were then validated on the remaining data. We also illustrate how to adjust the parameters for sensors with different sampling rates. Finally, we used study B (45 subjects, ~365 days, 15-minute Abbott Freestyle Libre sensor) to further validate our results.

Results: Our approach was effective in predicting the uncertainty when time-in-ranges are estimated using n days of continuous glucose monitoring (CGM), matching the variability observed in the data. As an example, monitoring a population with TIR = 70%, TITR = 50%, TBR = 5% and TAR = 25% for 30 days warrants a precision of ±3.50%, ±3.68%, ±1.33% and ±3.66%, respectively.

Conclusions: The presented approach can be used to both compute the uncertainty of time-in-ranges and determine the minimum duration of a trial to achieve the desired precision. An online tool to facilitate its implementation is made freely available to the clinical investigator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8518626PMC
http://dx.doi.org/10.1111/dom.14483DOI Listing

Publication Analysis

Top Keywords

minimum duration
12
uncertainty time-in-ranges
12
time range
12
continuous glucose
8
glucose monitoring
8
desired precision
8
compute uncertainty
8
determine minimum
8
duration trial
8
trial achieve
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!