Heavy metals' amassment in the soil environment is a threat to crop and agricultural sustainability and consequentially the global food security. For achieving enhancement of crop productivity in parallel to reducing chromium (Cr) load onto food chain demands continuous investigation and efforts to develop cost-effective strategies for maximizing crop yield and quality. In this context, we investigated the amelioration of Cr(VI) toxicity through β-pinene in experimental dome simulating natural field conditions. The protective role of β-pinene was determined on physiology, morphology and ultrastructure in Zea mays under Cr(VI) stress (250 and 500 μM). Results exhibited a marked reduction in the overall growth (shoot and root length and dry matter) of Z. mays plants subjected to Cr(VI) stress. Photosynthetic pigments (chlorophyll and carotenoids) were evidently reduced, and there was a loss of membrane integrity. Supplementation of β-pinene (100 μM), however, declined the toxicity induced by Cr(VI). Interestingly, Cr-tolerant abilities were improved in relation to plant growth, photosynthetic pigments and membrane integrity with the combined treatment of Cr(VI) and β-pinene. β-Pinene also reduced the root-mediated uptake of Cr(VI) and translocation to shoots. Moreover, significant ultrastructural damages recorded in roots and shoots under Cr(VI) stress were partially reverted upon addition of β-pinene. Our analyses revealed that β-pinene mitigates Cr(VI) toxicity in Z. mays, either by membrane stabilization or serving as a barrier to the uptake of Cr from soil. Thus, exogenous supply of β-pinene can be an effective alternative to mitigate Cr toxicity in soil. However, it is deemed essential to investigate further the responses throughout the life cycle of the plant on β-pinene supplementation under natural conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15018-7 | DOI Listing |
J Hazard Mater
January 2025
Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China. Electronic address:
Quorum sensing (QS) is recognized for enhancing bacterial resistance against heavy metals by regulating the production of extracellular substances that hinder metal penetration into the intracellular environment. However, it remains unclear whether QS contributes to resistance by regulating electron transfer, thereby transforming metals from more toxic to less toxic forms. This study investigated the regulatory mechanism of acyl-homoserine lactone (AHL)-mediated QS on electron transfer under As(III) and Cr(VI) stress.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China. Electronic address:
In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
J Environ Manage
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Understanding root uptake mechanisms for various elements is crucial for optimizing heavy metal remediation strategies and enhancing plant-nutrient interactions. However, simple and effective methods to differentiate the contributions of specific root segments in element uptake are lacking. Here, we developed a layered culture device consisting of a culture box and a plant suspension mechanism, which isolates different root segments through solid media and waterproof coating.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
November 2024
School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!