Guar gum-derived galactomannan (GGGM) has been widely used in the food industry for a long time and its adverse impacts have been scarcely reported. Galactomannan is considered to have a structure similar to the surface components of certain pathogens, and the present study was thus conducted to investigate if oral administration of GGGM could cause physiological effects that were hypothesized to be related to intestinal inflammatory responses. The results showed that oral administration of GGGM resulted in compromises on growth performance, an increase of the relative weight of spleen and epididymal fat, and an elevation of the α1-acid glycoprotein content in both serum and livers of mice. With regard to energy metabolism-related indices, the activities of intestinal lactic dehydrogenase and succinic dehydrogenase were all increased by the GGGM treatment in both in vivo and in vitro experiments, the latter of which also showed an elevation in the consumption of reducing sugar by intestinal epithelial cells along with a reduced viability of these cells in response to the GGGM treatment. Notably, the GGGM treatment triggered intestinal inflammatory responses that were evidenced by the increased expression of intestinal inflammatory cytokines such as TNF-α and IL-6 both in vivo and in vitro, which were at least partially responsible for the increased energy expenditure in the intestine and the retardation of growth. The results of this study could expand our knowledge of GGGM administration and provide integrated insights into the consumption of GGGM-containing foods.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1fo01143jDOI Listing

Publication Analysis

Top Keywords

inflammatory responses
12
intestinal inflammatory
12
gggm treatment
12
guar gum-derived
8
gum-derived galactomannan
8
increased energy
8
energy expenditure
8
expenditure intestine
8
oral administration
8
administration gggm
8

Similar Publications

Bioinspired Adhesive Hydrogel Platform with Photothermal Antimicrobial, Antioxidant, and Angiogenic Properties for Whole-Process Management of Diabetic Wounds.

ACS Appl Mater Interfaces

January 2025

Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.

Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties.

View Article and Find Full Text PDF

Background: Fracture disrupts the integrity and continuity of the bone, leading to symptoms such as pain, tenderness, swelling, and bruising. Rhizoma Musae is a medicinal material frequently utilized in the Miao ethnic region of Guizhou Province, China. However, its specific mechanism of action in treating fractures remains unknown.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality globally, with oxidative stress playing a pivotal role in its progression. Free radicals produced via oxidative stress contribute to lipid peroxidation, leading to subsequent inflammatory responses, which then result in atherosclerosis. Antioxidants inhibit these harmful effects through their reducing ability, thereby preventing oxidative damage.

View Article and Find Full Text PDF

Introduction: Staphylococcus aureus is a gram-positive, facultatively anaerobic coccus capable of causing infectious diseases in animals and humans. Especially dangerous are multidrug-resistant forms with poor or even no response to available treatments.

Objectives: The study aimed to verify the effect of enzybiotics on the healing of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!