SARS-CoV-2 is responsible for the COVID-19 pandemic. The immune system is a determinant factor in defense against viral infections. Thus, when it acts in a balanced and effective manner the disease is self-limited and benign. Nevertheless, in a significant proportion of the population, the immune response is exaggerated. When infected, patients with diabetes, hypertension, obesity, and cardiovascular disease are more likely to progress to severe forms. These diseases are related to chronic inflammation and endothelial dysfunction. Toll-like receptors are expressed on immune cells and play an important role in the physiopathology of cardiovascular and metabolic diseases. When activated, they can induce release of inflammatory cytokines. Hypercoagulability, hyperinflammation, platelet hyperresponsiveness, and endothelial dysfunction occur in immune system hyperactivity caused by viral activity, thereby increasing the risk of arterial and venous thrombosis. We discuss the interactions between COVID-19, immunity, the endothelium, and coagulation, as well as why cardiometabolic diseases have a negative impact on COVID-19 prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8218014 | PMC |
http://dx.doi.org/10.1590/1677-5449.200131 | DOI Listing |
Int J Mol Sci
December 2024
Biochemistry, Molecular Biology B and Immunology Department, University of Murcia (UMU), 30120 Murcia, Spain.
Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.
View Article and Find Full Text PDFEur Cytokine Netw
September 2024
The blood-brain barrier (BBB) consists of a unique system of brain microvascular endothelial cells, capillary basement membranes, and terminal branches ("end-feet") of astrocytes. The BBB's primary function is to protect the central nervous system from potentially harmful or toxic substances in the bloodstream by selectively controlling the entry of cells and molecules, including nutrients and immune system components. During neuroinflammation, the BBB loses its integrity, resulting in increased permeability, mostly due to the activity of inflammatory cytokines.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
Atherosclerosis is a progressive arterial disease arising from imbalanced lipid metabolism and a maladaptive immune response. The lymphatic system ensures tissue fluid homeostasis, absorption of dietary fats and trafficking of immune cells to draining lymph nodes, thereby potentially affecting atherogenesis. Endothelial cell-specific deletion of Pannexin1 (Panx1) in apolipoprotein E-deficient (Apoe-/-) mice increased atherosclerosis, suggesting a protective role for Panx1 channels in arterial endothelial function.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Immunology, University of Connecticut School of Medicine, Connecticut, Farmington, 06030, USA.
Background: Neutrophils are the most abundant leukocytes in human blood, and their recruitment is essential for innate immunity and inflammatory responses. The initial and critical step of neutrophil recruitment is their adhesion to vascular endothelium, which depends on G protein-coupled receptor (GPCR) triggered integrin inside-out signaling that induces β2 integrin activation and clustering on neutrophils. Kindlin-3 and talin-1 are essential regulators for the inside-out signaling induced β2 integrin activation.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Lung infection is one of the leading causes of morbidity and mortality worldwide. Even with appropriate antibiotic and antiviral treatment, mortality in hospitalized patients often exceeds 10%, highlighting the need for the development of new therapeutic strategies. Of late, cystic fibrosis transmembrane conductance regulator (CFTR) is - in addition to its well-established roles in the lung airway and extrapulmonary organs - increasingly recognized as a key regulator of alveolar homeostasis and defense.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!