AI Article Synopsis

  • TLR signaling plays a vital role in defending against infections and influencing tissue development, with different TLRs triggering distinct inflammatory responses.
  • This study highlights how TLR3 enhances innate immunity by inducing the expression of other TLRs and affecting various molecular pathways, while TLR7 shows different regulatory effects.
  • Using CRISPR/Cas9 technology, researchers tagged TLRs to study their expression and modifications, revealing that TLR3 functions normally while TLR7's signaling is disrupted due to a blocked interaction with an essential adapter protein.

Article Abstract

Toll-like receptor (TLR) signaling is critical for defense against pathogenic infection, as well as for modulating tissue development. Activation of different TLRs triggers common inflammatory responses such as cytokine induction. Here, we reveal differential impacts of TLR3 and TLR7 signaling on transcriptomic profiles in bone marrow-derived macrophages (BMDMs). Apart from self-regulation, TLR3, but not TLR7, induced expression of other TLRs, suggesting that TLR3 activation globally enhances innate immunity. Moreover, we observed diverse influences of TLR3 and TLR7 signaling on genes involved in methylation, caspase and autophagy pathways. We compared endogenous TLR3 and TLR7 by using CRISPR/Cas9 technology to knock in a dual Myc-HA tag at the 3' ends of mouse and . Using anti-HA antibodies to detect endogenous tagged TLR3 and TLR7, we found that both TLRs display differential tissue expression and posttranslational modifications. C-terminal tagging did not impair TLR3 activity. However, it disrupted the interaction between TLR7 and myeloid differentiation primary response 88 (MYD88), the Tir domain-containing adaptor of TLR7, which blocked its downstream signaling necessary to trigger cytokine and chemokine expression. Our study demonstrates different properties for TLR3 and TLR7, and also provides useful mouse models for further investigation of these two RNA-sensing TLRs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240634PMC
http://dx.doi.org/10.3389/fimmu.2021.686060DOI Listing

Publication Analysis

Top Keywords

tlr3 tlr7
28
tlr3
9
tlr7
9
reveal differential
8
endogenous tlr3
8
tlr7 signaling
8
signaling
5
transcriptomic analysis
4
analysis c-terminal
4
c-terminal epitope
4

Similar Publications

Excessive inflammatory responses to viral infections, known as cytokine storms, are caused by overactivation of endolysosomal Toll-like receptors (TLRs) (TLR3, TLR7, TLR8, and TLR9) and can be lethal, but no specific treatment is available. Some quinoline derivatives with antiviral activity were tried during the recent coronavirus disease 2019 (COVID-19) pandemic, but showed serious toxicity, and their efficacy for treating viral cytokine storms was not established. Here, in order to discover a low-toxicity quinoline derivative as a candidate for controlling virally induced inflammation, we synthesized a series of derivatives of amodiaquine (ADQ), a quinoline approved as an antimalarial, and tested their effects on TLRs-mediated production of inflammatory cytokines and cell viability in vitro.

View Article and Find Full Text PDF

Pleomorphic adenoma (PA) is a benign salivary gland tumour that may recur or undergo malignant transformation (CXPA). Toll-like receptors (TLR) mediate immune responses triggered by various agents such as viruses and are related to tumour formation either by stimulating or suppressing their growth, with variation across different tumour entities. We compared TLR immunohistochemical expression in PA, its recurrent counterparts and CXPA and evaluated the effect of virus presence in these tumours.

View Article and Find Full Text PDF

Targeting toll-like receptor 7 as a therapeutic development strategy for systemic lupus erythematosus.

Acta Pharm Sin B

November 2024

State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.

Endosomal TLRs (TLR3/7/8/9) are highly analogous innate immunity sensors for various viral or bacterial RNA/DNA molecular patterns. Among them, TLR7, in particular, has been suggested to be a target for various inflammatory disorders and autoimmune diseases including systemic lupus erythematosus (SLE); but few small-molecule inhibitors with elaborated mechanism have been reported in literature. Here, we reported a well-characterized human TLR7-specific small-molecule inhibitor, TH-407b, with promising potency and negligible cytotoxicity through a novel binding mechanism.

View Article and Find Full Text PDF

With prolonged ethanol ingestion, disturbances in the emotional spectrum develop, and memory problems are noted. These symptoms could be mediated by the development of neurochemical changes in the hippocampus of the brain. Although there is evidence that hippocampus is vulnerable to chronic alcohol intoxication and that neuroinflammation and neurodegeneration develop in this brain region, the key molecular mechanisms have not been identified.

View Article and Find Full Text PDF

Rosmarinic acid-mediated downregulation of RIG-I and p62 in microglia confers resistance to Japanese encephalitis virus-induced inflammation.

BMC Vet Res

December 2024

Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.

Background: Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic pathogen that causes encephalitis in humans and reproductive failure in pigs. The transmission of JEV between humans and animals poses a significant public health threat and results in substantial economic losses. Excessive inflammation in the central nervous system of JEV-infected patients is a major cause of mortality and disability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!