Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3899/jrheum.201048 | DOI Listing |
JACC Clin Electrophysiol
January 2025
Section of Cardiac Pacing and Electrophysiology, Division of Cardiology, Cleveland Clinic, Cleveland, Ohio, USA.
Background: In patients with mechanical aortic and mitral valves requiring catheter ablation of ventricular tachycardia (VT), a technique for access from the right atrium (RA) to the left ventricle (LV) via puncture of the inferoseptal process of the LV was previously described in a single-center series.
Objectives: This study sought to report the multicenter experience of VT ablation using this novel LV access approach.
Methods: We assembled a multicenter registry of patients with double mechanical valves who underwent VT ablation with RA-to-LV access.
Parkinsonism Relat Disord
January 2025
Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Ohio, United States. Electronic address:
Urol Oncol
January 2025
Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milan, Italy; Department of Medical Oncology, IRCCS San Raffaele University, Milan, Italy.
Treatment options for recurrent high-risk non-muscle-invasive bladder cancer (HR NMIBC) and muscle-invasive bladder cancer (MIBC) are limited, highlighting a need for clinically effective, accessible, and better-tolerated alternatives. In this review we examine the clinical development program of TAR-200, a novel targeted releasing system designed to provide sustained intravesical delivery of gemcitabine to address the needs of patients with NMIBC and of those with MIBC. We describe the concept and design of TAR-200 and the clinical development of this gemcitabine intravesical system in the SunRISe portfolio of studies.
View Article and Find Full Text PDFAtherosclerosis
December 2024
Department of Cardiology, School of Medicine, Trakya University, Turkey.
Int J Biol Macromol
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China. Electronic address:
R-loops, three-stranded nucleic acid structures composed of RNA-DNA hybrids, are increasingly recognized as central regulators of genomic stability and transcription. These structures play critical roles across various cellular processes, including DNA replication, repair, and gene regulation, with significant implications for stem cell biology and disease pathogenesis. This review comprehensively explores the molecular underpinnings of R-loop formation, emphasizing the dual nature of R-loops in both facilitating normal cellular functions and contributing to genomic instability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!