A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks. | LitMetric

Structural and diffusion MRI based schizophrenia classification using 2D pretrained and 3D naive Convolutional Neural Networks.

Schizophr Res

Center for Sleep and Cognition, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Center for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Neuroscience and Behavioural Disorders Program, Duke-NUS Medical School, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. Electronic address:

Published: May 2022

The ability of automatic feature learning makes Convolutional Neural Network (CNN) potentially suitable to uncover the complex and widespread brain changes in schizophrenia. Despite that, limited studies have been done on schizophrenia identification using interpretable deep learning approaches on multimodal neuroimaging data. Here, we developed a deep feature approach based on pre-trained 2D CNN and naive 3D CNN models trained from scratch for schizophrenia classification by integrating 3D structural and diffusion magnetic resonance imaging (MRI) data. We found that the naive 3D CNN models outperformed the pretrained 2D CNN models and the handcrafted feature-based machine learning approach using support vector machine during both cross-validation and testing on an independent dataset. Multimodal neuroimaging-based models accomplished performance superior to models based on a single modality. Furthermore, we identified brain grey matter and white matter regions critical for illness classification at the individual- and group-level which supported the salience network and striatal dysfunction hypotheses in schizophrenia. Our findings underscore the potential of CNN not only to automatically uncover and integrate multimodal 3D brain imaging features for schizophrenia identification, but also to provide relevant neurobiological interpretations which are crucial for developing objective and interpretable imaging-based probes for prognosis and diagnosis in psychiatric disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2021.06.011DOI Listing

Publication Analysis

Top Keywords

cnn models
12
structural diffusion
8
schizophrenia classification
8
convolutional neural
8
schizophrenia identification
8
naive cnn
8
schizophrenia
6
cnn
6
models
5
diffusion mri
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!