Structural Characterization of Protonated Water Clusters Confined in HZSM-5 Zeolites.

J Am Chem Soc

Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.

Published: July 2021

A molecular description of the structure and behavior of water confined in aluminosilicate zeolite pores is a crucial component for understanding zeolite acid chemistry under hydrous conditions. In this study, we use a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics (AIMD) to study HO confined in the pores of highly hydrated zeolite HZSM-5 (∼13 and ∼6 equivalents of HO per Al atom). The 2D IR spectrum reveals correlations between the vibrations of both terminal and H-bonded O-H groups and the continuum absorption of the excess proton. These data are used to characterize the hydrogen-bonding network within the cluster by quantifying single-, double-, and non-hydrogen-bond donor water molecules. These results are found to be in good agreement with the statistics calculated from an AIMD simulation of an H(HO) cluster in HZSM-5. Furthermore, IR spectral assignments to local O-H environments are validated with DFT calculations on clusters drawn from AIMD simulations. The simulations reveal that the excess charge is detached from the zeolite and resides near the more highly coordinated water molecules in the cluster. When they are taken together, these results unambiguously assign the complex IR spectrum of highly hydrated HZSM-5, providing quantitative information on the molecular environments and hydrogen-bonding topology of protonated water clusters under extreme confinement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c03205DOI Listing

Publication Analysis

Top Keywords

protonated water
8
water clusters
8
highly hydrated
8
water molecules
8
water
5
structural characterization
4
characterization protonated
4
clusters confined
4
hzsm-5
4
confined hzsm-5
4

Similar Publications

The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.

View Article and Find Full Text PDF

We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.

View Article and Find Full Text PDF

2H-NMR as a Practical Tool for Following MOF Formation: A Case Study of UiO-66.

Angew Chem Int Ed Engl

January 2025

Memorial University of Newfoundland, Chemistry, Department of Chemistry, 230 Elizabeth avenue, A1B 3X7, St. John's, CANADA.

Developing the mechanism for MOF formation is crucial for the rapid development of new materials. This work demonstrates that Deuterium-NMR spectroscopy is the optimal inter-laboratory methodology for understanding the in-situ kinetics of metal-organic framework (MOF) formation. This method is facile, affordable, and allows for the isolation and monitoring of individual reagents by using one deuterated component while the remaining components are protonated.

View Article and Find Full Text PDF

Sodium borohydride dihydrate (NaBH·2HO) forms through dihydrogen bonding between the hydridic hydrogen of the BH ion and the protonic hydrogen of the water molecule. High-pressure structural changes in NaBH·2HO, observed up to 11 GPa through X-ray diffraction and Raman scattering spectroscopy, were analyzed to assess the influence of dihydrogen bonds on its crystal structure. At approximately 4.

View Article and Find Full Text PDF

Background: Peroral endoscopic myotomy (POEM) is a well-established endoscopic treatment for achalasia, utilizing an endoscopic knife for dissection. Recently, new knives with an integrated water-jet (WJ) function have been introduced. This study aims to compare the technical, perioperative, and late postoperative outcomes between WJ knives and conventional (C) knives, which lack the WJ function, through a pairwise meta-analysis of published comparative studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!