Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) application could be a useful and sustainable strategy to enhance agronomic N use efficiency, leading to better cereal development. This study was developed to explore the effect of Si application as a soil amendment source (Ca and Mg silicate) associated with N levels applied in a side-dressing (control, low, medium and high N levels) on maize and wheat development, N uptake, agronomic efficiency and grain yield. The field experiments were carried out during four cropping seasons, using two soil amendment sources (Ca and Mg silicate and dolomitic limestone) and four N levels (0, 50, 100 and 200 kg N ha). The following evaluations were performed in maize and wheat crops: the shoots and roots biomass, total N, N-NO, N-NH and Si accumulation in the shoots, roots and grain tissue, leaf chlorophyll index, grain yield and agronomic efficiency. The silicon amendment application enhanced leaf chlorophyll index, agronomic efficiency and N-uptake in maize and wheat plants, benefiting shoots and roots development and leading to a higher grain yield (an increase of 5.2 and 7.6%, respectively). It would be possible to reduce N fertilization in maize from 185-180 to 100 kg N ha while maintaining similar grain yield with Si application. Additionally, Si application would reduce N fertilization in wheat from 195-200 to 100 kg N ha. Silicon application could be a key technology for improving plant-soil N-management, especially in Si accumulator crops, leading to a more sustainable cereal production under tropical conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309197 | PMC |
http://dx.doi.org/10.3390/plants10071329 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!