AI Article Synopsis

  • * The study tested the effects of silicon (Si) as a soil amendment along with varying nitrogen (N) levels on the growth and yield of maize and wheat over four cropping seasons.
  • * Results showed that Si application improved plant development, increased nitrogen uptake, and boosted grain yields by 5.2% for maize and 7.6% for wheat, allowing for a significant reduction in nitrogen fertilization without compromising yield.

Article Abstract

Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) application could be a useful and sustainable strategy to enhance agronomic N use efficiency, leading to better cereal development. This study was developed to explore the effect of Si application as a soil amendment source (Ca and Mg silicate) associated with N levels applied in a side-dressing (control, low, medium and high N levels) on maize and wheat development, N uptake, agronomic efficiency and grain yield. The field experiments were carried out during four cropping seasons, using two soil amendment sources (Ca and Mg silicate and dolomitic limestone) and four N levels (0, 50, 100 and 200 kg N ha). The following evaluations were performed in maize and wheat crops: the shoots and roots biomass, total N, N-NO, N-NH and Si accumulation in the shoots, roots and grain tissue, leaf chlorophyll index, grain yield and agronomic efficiency. The silicon amendment application enhanced leaf chlorophyll index, agronomic efficiency and N-uptake in maize and wheat plants, benefiting shoots and roots development and leading to a higher grain yield (an increase of 5.2 and 7.6%, respectively). It would be possible to reduce N fertilization in maize from 185-180 to 100 kg N ha while maintaining similar grain yield with Si application. Additionally, Si application would reduce N fertilization in wheat from 195-200 to 100 kg N ha. Silicon application could be a key technology for improving plant-soil N-management, especially in Si accumulator crops, leading to a more sustainable cereal production under tropical conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309197PMC
http://dx.doi.org/10.3390/plants10071329DOI Listing

Publication Analysis

Top Keywords

agronomic efficiency
24
maize wheat
16
grain yield
16
shoots roots
12
silicon amendment
8
fertilization maize
8
wheat crops
8
tropical conditions
8
silicon application
8
soil amendment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!