Interest in the development of graphene-based materials for advanced applications is growing, because of the unique features of such nanomaterials and, above all, of their outstanding versatility, which enables several functionalization pathways that lead to materials with extremely tunable properties and architectures. This review is focused on the careful examination of relationships between synthetic approaches currently used to derivatize graphene, main properties achieved, and target applications proposed. Use of functionalized graphene nanomaterials in six engineering areas (materials with enhanced mechanical and thermal performance, energy, sensors, biomedical, water treatment, and catalysis) was critically reviewed, pointing out the latest advances and potential challenges associated with the application of such materials, with a major focus on the effect that the physicochemical features imparted by functionalization routes exert on the achievement of ultimate properties capable of satisfying or even improving the current demand in each field. Finally, current limitations in terms of basic scientific knowledge and nanotechnology were highlighted, along with the potential future directions towards the full exploitation of such fascinating nanomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308136 | PMC |
http://dx.doi.org/10.3390/nano11071717 | DOI Listing |
Small
January 2025
Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.
Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Università di Milano-Bicocca, Dipartimento di Scienza dei Materiali, via Cozzi 55, 20125, Milano, ITALY.
Confined single metal atoms in graphene-based materials have proven to be excellent catalysts for several reactions and promising gas sensing systems. However, whether the chemical activity arises from the specific type of metal atom or is a direct consequence of the confinement itself remains unclear. In this work, through a combined density functional theory and experimental surface science study, we address this question by investigating Co and Ni single atoms embedded in graphene (Gr) on a Ni(111) support.
View Article and Find Full Text PDFSmall
January 2025
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan.
Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.
View Article and Find Full Text PDFNat Commun
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.
With the rapid development of graphene industry, low-cost sustainable synthesis of monolayer graphene oxide (GO) has become more and more important for many applications such as water desalination, thermal management, energy storage and functional composites. Compared to the conventional chemical oxidation methods, water electrolytic oxidation of graphite-intercalation-compound (GIC) shows significant advantages in environmental-friendliness, safety and efficiency, but suffers from non-uniform oxidation, typically ~50 wt.% yield with ~50% monolayers.
View Article and Find Full Text PDFNanotechnology
January 2025
Department of Electrical and Computer Engineering, Nazarbayev University, Nazarbayev University, Astana, Kazakhstan, Astana, 010000, KAZAKHSTAN.
Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!