Marine biotoxins have been frequently implicated in morbidity and mortality events in numerous species of birds worldwide. Nevertheless, their effects on seabirds have often been overlooked and the associated ecological impact has not been extensively studied. On top of that, the number of published studies confirming by analyses the presence of marine biotoxins from harmful algal blooms (HABs) in seabirds, although having increased in recent years, is still quite low. This review compiles information on studies evidencing the impact of HAB toxins on marine birds, with a special focus on the effects of paralytic and amnesic shellfish toxins (PSTs and ASTs). It is mainly centered on studies in which the presence of PSTs and/or ASTs in seabird samples was demonstrated through analyses. The analytical techniques commonly employed, the tissues selected and the adjustments done in protocols for processing seabird matrixes are summarized. Other topics covered include the role of different vectors in the seabird intoxications, information on clinical signs in birds affected by PSTs and ASTs, and multifactorial causes which could aggravate the syndromes. Close collaboration between seabird experts and marine biotoxins researchers is needed to identify and report the potential involvement of HABs and their toxins in the mortality events. Future studies on the PSTs and ASTs pharmacodynamics, together with the establishment of lethal doses in various seabird species, are also necessary. These studies would aid in the selection of the target organs for toxins analyses and in the postmortem intoxication diagnoses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309893 | PMC |
http://dx.doi.org/10.3390/toxins13070454 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFFoods
January 2025
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA.
Tetrodotoxin (TTX), a potent Site-1 sodium channel blocker (S1SCB), offers highly effective local anesthetic properties with minimal addiction potential. To fully leverage TTX's capabilities as a local anesthetic, it is crucial to develop a drug delivery system that balances its systemic toxicity with its therapeutic efficacy. Recent studies have shown that peptide mixtures, derived from fragments of Site-1 sodium channel proteins and enhanced with hydrophobic tails (designated MP1 and MP2), can self-assemble into nanostructures that exhibit remarkable sustained-release capabilities for TTX.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266235, China.
The neurotoxin β-methylamino-L-alanine (BMAA) produced by cyanobacteria is widely present in foods and dietary supplements, posing a significant threat to human health. Ganglioside GM1 (GM1) has demonstrated potential for treating neurodegenerative diseases; however, its ability to prevent BMAA-induced neurotoxicity remains uncertain. In this study, zebrafish embryos were treated with Ganglioside GM1 to investigate its neuroprotective effects against BMAA exposure and the underlying mechanisms.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!