Longitudinal Deformation of Deep Shield Tunnels Caused by Upper Load Reduction.

Materials (Basel)

China Railway 23 Construction Bureau, Ltd. the Sixth Group, Chongqing 400800, China.

Published: June 2021

Above-crossing excavations may cause uplift damages on existing shield tunnels. Therefore, to accurately calculate the deformation of shield tunnels is very necessary for geotechnical engineers. At present, the single-sided elastic foundation beam model is usually used in longitudinal deformation calculations for shield tunnels, which overestimates the uplift of deep shield tunnels. Because of the existence of the ground arch, deep shield tunnels are subjected to two-sided foundation reaction forces. Therefore, this paper proposes a partial missing double-sided elastic foundation beam model and the related fourth-order partial differential equations. In this model, the shield tunnel is subjected to double Winkler foundation springs and is simply considered a Euler-Bernoulli beam. A two-stage analysis method is used to solve the problem. First, the vertical unloading stress due to the above-crossing tunnelling at the tunnel location is calculated through Mindlin's solution. Second, the deformation response of the beam subjected to an unloading stress is calculated by the finite difference method. Two engineering cases are used to verify the research. The results indicate that the proposed model is more accurate than traditional models in predicting the maximum uplift value, which is basically consistent with the observations. Due to the existence of segment staggering, the longitudinal influence range of the calculation by two models is larger than the actual measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8269697PMC
http://dx.doi.org/10.3390/ma14133629DOI Listing

Publication Analysis

Top Keywords

shield tunnels
24
deep shield
12
longitudinal deformation
8
elastic foundation
8
foundation beam
8
beam model
8
unloading stress
8
shield
7
tunnels
6
deformation deep
4

Similar Publications

Dislocation of segments in shield tunnels significantly contributes to joint leakage, making it crucial to identify the critical dislocation amount of segment linings. To explore the waterproofing mechanism of sealing gaskets under water pressure, a structural coupling finite element analysis model was created. This model simulates water intrusion dynamics at segment joints, analyzing contact stress distribution and waterproof performance across various dislocation amounts.

View Article and Find Full Text PDF

First Report of Bacterial Wilt of Ginger Caused by in the Continental United States.

Plant Dis

January 2025

University of Minnesota Twin Cities, Department of Plant Pathology, 1991 Upper Buford circle, 495 Borlaug Hall, Saint Paul, Minnesota, United States, 55108;

Ginger (Zingiber officinale) is an herbaceous perennial in the Zingiberaceae family grown primarily in tropical to subtropical biomes as a culinary spice, a traditional medicine, and a landscaping plant. While ginger grows at soil temperatures above 20°C, several farmers in the upper Midwestern US farmers grows short-season ginger in high tunnels. In 2023 and 2024, growers in southeastern Minnesota reported a new disease of ginger.

View Article and Find Full Text PDF

Ab Initio Rotational and Vibrational Spectroscopy of CH Radicals at the Coupled Cluster Level.

J Phys Chem A

January 2025

Department of Chemistry, University of California, Davis, One Shields Ave., Davis, California 95616, United States.

Combustion and pyrolysis processes of allene and propyne are known to involve radicals with the structural formula CH, the most stable of which is the classic resonance-stabilized allyl radical. In addition to allyl, four other isomers of CH are possible: the propene derivatives -1-propenyl, -1-propenyl, and 2-propenyl, as well as the cyclopropane derivative cyclopropyl. Among these 5 species, the allyl radical has been extensively studied both theoretically and spectroscopically; however, little is known about the spectroscopy of the cyclopropyl radical, and virtually no experimental spectroscopic data are available for the remaining three.

View Article and Find Full Text PDF

This article uses the engineering background of the Zhengzhou Metro Line 5 with a cement-soil group pile composite foundation. It simplifies the composite foundation using the area-weighted composite modulus method and establishes a finite element model of a double-line EPBM passing beneath the cement-soil group pile composite foundation building. The calculation results were compared and validated against monitoring data.

View Article and Find Full Text PDF

In recent years, steel-fiber-reinforced concrete (SFRC) has been increasingly applied in shield tunnel engineering. However, most research on SFRC segments focuses on the load-bearing capacity, while the tunnel deformation is an equally critical indicator that decides if the tunnel can operate safely during service conditions. Therefore, it is essential to also study the stiffness variations in SFRC segments, which is closely connected to the serviceability limit state (SLS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!